Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Front Pharmacol ; 15: 1352730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576481

RESUMO

Hyperuricemia is an independent risk factor for chronic kidney disease and contributes to renal fibrosis. This study aims to investigate the effect of Src family kinase (SFK) inhibition on the development of hyperuricemic nephropathy (HN) and the mechanisms involved. In a rat model of HN, feeding rats a mixture of adenine and potassium oxonate increased Src phosphorylation, severe glomerular sclerosis, and renal interstitial fibrosis, accompanied by renal dysfunction and increased urine microalbumin excretion. Administration of PP1, a highly selective SFK inhibitor, prevented renal dysfunction, reduced urine microalbumin, and inhibited activation of renal interstitial fibroblasts and expression of extracellular proteins. PP1 treatment also inhibited hyperuricemia-induced activation of the TGF-ß1/Smad3, STAT3, ERK1/2, and NF-κB signaling pathways and expression of multiple profibrogenic cytokines/chemokines in the kidney. Furthermore, PP1 treatment significantly reduced serum uric acid levels and xanthine oxidase activity. Thus, blocking Src can attenuate development of HN via a mechanism associated with the suppression of TGF-ß1 signaling, inflammation, and uric acid production. The results suggest that Src inhibition might be a promising therapeutic strategy for HN.

2.
FASEB J ; 38(7): e23583, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38551634

RESUMO

We have recently demonstrated that Jumonji domain-containing protein D3 (JMJD3), a histone demethylase of histone H3 on lysine 27 (H3K27me3), is protective against renal fibrosis, but its role in acute kidney injury (AKI) remains unexplored. Here, we report that JMJD3 activity is required for renal protection and regeneration in murine models of AKI induced by ischemia/reperfusion (I/R) and folic acid (FA). Injury to the kidney upregulated JMJD3 expression and induced expression of H3K27me3, which was coincident with renal dysfunction, renal tubular cell injury/apoptosis, and proliferation. Blocking JMJD3 activity by GSKJ4 led to worsening renal dysfunction and pathological changes by aggravating tubular epithelial cell injury and apoptosis in both murine models of AKI. JMJD3 inhibition by GSKJ4 also reduced renal tubular cell proliferation and suppressed expression of cyclin E and phosphorylation of CDK2, but increased p21 expression in the injured kidney. Furthermore, inactivation of JMJD3 enhanced I/R- or FA-induced expression of TGF-ß1, vimentin, and Snail, phosphorylation of Smad3, STAT3, and NF-κB, and increased renal infiltration by F4/80 (+) macrophages. Finally, GSKJ4 treatment caused further downregulation of Klotho, BMP-7, Smad7, and E-cadherin, all of which are associated with renal protection and have anti-fibrotic effects. Therefore, these data provide strong evidence that JMJD3 activation contributes to renal tubular epithelial cell survival and regeneration after AKI.


Assuntos
Injúria Renal Aguda , Histonas , Animais , Camundongos , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Proliferação de Células , Histonas/metabolismo , Rim/metabolismo , Fosforilação
3.
Mol Biomed ; 5(1): 3, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172378

RESUMO

The disruptor of telomeric silencing 1-like (DOT1L), a specific histone methyltransferase that catalyzed methylation of histone H3 on lysine 79, was associated with the pathogenesis of many diseases, but its role in peritoneal fibrosis remained unexplored. Here, we examined the role of DOT1L in the expression and activation of protein tyrosine kinases and development of peritoneal fibrosis. We found that a significant rise of DOT1L expression in the fibrotic peritoneum tissues from long-term PD patients and mice. Inhibition of DOT1L significantly attenuated the profibrotic phenotypic differentiation of mesothelial cells and macrophages, and alleviated peritoneal fibrosis. Mechanistically, RNA sequencing and proteomic analysis indicated that DOT1L was mainly involved in the processes of protein tyrosine kinase binding and extracellular matrix structural constituent in the peritoneum. Chromatin immunoprecipitation (ChIP) showed that intranuclear DOT1L guided H3K79me2 to upregulate EGFR in mesothelial cells and JAK3 in macrophages. Immunoprecipitation and immunofluorescence showed that extranuclear DOT1L could interact with EGFR and JAK3, and maintain the activated signaling pathways. In summary, DOT1L promoted the expression and activation of tyrosine kinases (EGFR in mesothelial cells and JAK3 in macrophages), promoting cells differentiate into profibrotic phenotype and thus peritoneal fibrosis. We provide the novel mechanism of dialysis-related peritoneal fibrosis (PF) and the new targets for clinical drug development. DOT1L inhibitor had the PF therapeutic potential.


Assuntos
Histona-Lisina N-Metiltransferase , Fibrose Peritoneal , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Fibrose Peritoneal/patologia , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/genética , Humanos , Camundongos , Masculino , Regulação para Cima/efeitos dos fármacos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Janus Quinase 3/metabolismo , Janus Quinase 3/genética , Camundongos Endogâmicos C57BL , Feminino , Transdução de Sinais/efeitos dos fármacos
5.
Acta Pharmacol Sin ; 45(1): 137-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37640899

RESUMO

Sirtuins (Sirts) are a family of nicotinamide adenine dinucleotide-dependent protein deacetylases that share diverse cellular functions. Increasing evidence shows that Sirts play a critical role in podocyte injury, which is a major determinant of proteinuria-associated renal disease. Membranous nephropathy (MN) is a typical glomerular disease in which podocyte damage mediates proteinuria development. In this study we investigated the molecular mechanisms underlying the regulatory roles of Sirt in podocyte injury in MN patients, rats with cationic bovine serum albumin (CBSA)-induced MN and zymosan activation serum (ZAS)-stimulated podocytes. Compared with healthy controls, MN patients showed significant reduction in intrarenal Sirt1 and Sirt6 protein expression. In CBSA-induced MN rats, significant reduction in intrarenal Sirt1, Sirt3 and Sirt6 protein expression was observed. However, only significant decrease in Sirt6 protein expression was found in ZAS-stimulated podocytes. MN patients showed significantly upregulated protein expression of Wnt1 and ß-catenin and renin-angiotensin system (RAS) components in glomeruli. CBSA-induced MN rats exhibited significantly upregulated protein expression of intrarenal Wnt1 and ß-catenin and their downstream gene products as well as RAS components. Similar results were observed in ZAS-stimulated podocytes. In ZAS-stimulated podocytes, treatment with a specific Sirt6 activator UBCS039 preserved the protein expression of podocin, nephrin and podocalyxin, accompanied by significant inhibition of the protein expression of ß-catenin and its downstream gene products, including Snail1 and Twist; treatment with a ß-catenin inhibitor ICG-001 significantly preserved the expression of podocyte-specific proteins and inhibited the upregulation of downstream ß-catenin gene products accompanied by significant suppression of the protein expression of RAS components. Thus, we demonstrate that Sirt6 ameliorates podocyte injury by blocking RAS signalling via the Wnt1/ß-catenin pathway. Sirt6 is a specific therapeutic target for the treatment of podocyte damage-associated renal disease.


Assuntos
Nefropatias , Podócitos , Humanos , Ratos , Animais , beta Catenina/metabolismo , Podócitos/metabolismo , Sirtuína 1/metabolismo , Sistema Renina-Angiotensina , Nefropatias/metabolismo , Proteinúria
6.
Am J Physiol Cell Physiol ; 325(4): C1085-C1096, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37694285

RESUMO

Irisin is involved in the regulation of a variety of physiological conditions, metabolism, and survival. We and others have demonstrated that irisin contributes critically to modulation of insulin resistance and the improvement of cardiac function. However, whether the deletion of irisin will regulate cardiac function and insulin sensitivity in type II diabetes remains unclear. We utilized the CRISPR/Cas-9 genome-editing system to delete irisin globally in mice and high-fat diet (HFD)-induced type II diabetes model. We found that irisin deficiency did not result in developmental abnormality during the adult stage, which illustrates normal cardiac function and insulin sensitivity assessed by glucose tolerance test in the absence of stress. The ultrastructural analysis of the transmission electronic microscope (TEM) indicated that deletion of irisin did not change the morphology of mitochondria in myocardium. Gene expression profiling showed that several key signaling pathways related to integrin signaling, extracellular matrix, and insulin-like growth factors signaling were coordinately downregulated by deletion of irisin. However, when mice were fed a high-fat diet and chow food for 16 wk, ablation of irisin in mice exposed to HFD resulted in much more severe insulin resistance, metabolic derangements, profound cardiac dysfunction, and hypertrophic response and remodeling as compared with wild-type control mice. Taken together, our results indicate that the loss of irisin exacerbates insulin resistance, metabolic disorders, and cardiac dysfunction in response to HFD and promotes myocardial remodeling and hypertrophic response. This evidence reveals the molecular evidence and the critical role of irisin in modulating insulin resistance and cardiac function in type II diabetes.NEW & NOTEWORTHY By utilizing the CRISPR/Cas-9 genome-editing system and high-fat diet (HFD)-induced type II diabetes model, our results provide direct evidence showing that the loss of irisin exacerbates cardiac dysfunction and insulin resistance while promoting myocardial remodeling and a hypertrophic response in HFD-induced diabetes. This study provides new insight into understanding the molecular evidence and the critical role of irisin in modulating insulin resistance and cardiac function in type II diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiopatias , Resistência à Insulina , Camundongos , Animais , Resistência à Insulina/genética , Fibronectinas/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos
7.
Am J Physiol Renal Physiol ; 325(5): F669-F680, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733875

RESUMO

Mixed lineage leukemia 1 (MLL1) is a methyltransferase that induces histone H3 lysine 4 trimethylation (H3K4me3) and partially exerts its untoward functional effects by interacting with multiple subunits including menin and WD repeat-containing protein 5 (WDR5). In this study, we investigated the role and mechanisms of MLL1 in murine models of acute kidney injury induced by folic acid (FA) and ischemia-reperfusion. Injury to the kidney elevated the expression of MLL1, menin, WDR5, and H3K4Me3, which was accompanied by increased serum creatinine and blood urea nitrogen, renal tubular injury, and apoptosis. Pharmacological inhibition of MLL1 activity with MI503 to disrupt the interaction between MLL1 with menin further increased serum creatinine and blood urea nitrogen levels, enhanced expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, and induced more apoptosis in the kidney following FA and ischemia-reperfusion injury. In contrast, MI503 treatment decreased the expression of vimentin and proliferating cell nuclear antigens. Similarly, treatment with MM102 to disrupt the interaction between MLL1 and WDR5 also worsened renal dysfunction, aggravated tubular cell injury, increased apoptosis, and inhibited cellular dedifferentiation and proliferation in mice following FA injection. Moreover, MI503 inhibited FA-induced phosphorylation of epidermal growth factor receptor, signal transducer and activator of transcription 3, and extracellular signal-regulated kinase-1/2 in injured kidneys. Collectively, these data suggest that MLL1 contributes to renal protection and functional recovery and promotes renal regeneration through a mechanism associated with activation of the epidermal growth factor receptor signaling pathway.NEW & NOTEWORTHY Mixed lineage leukemia 1 (MLL1) is a methyltransferase that induces histone H3 lysine 4 trimethylation and exerts its functional roles by interacting with multiple subunits. In this study, we demonstrated that inhibition of MLL1 activity by MI503 or MM102 aggravated renal injury and apoptosis and suppressed renal tubular cell dedifferentiation and proliferation, suggesting that MLL1 activation during acute kidney injury acts as an intrinsic protective mechanism to mediate renal tubular cell survival and regeneration.


Assuntos
Injúria Renal Aguda , Leucemia , Traumatismo por Reperfusão , Camundongos , Animais , Histonas/metabolismo , Ácido Fólico/farmacologia , Creatinina , Lisina/uso terapêutico , Proteína de Leucina Linfoide-Mieloide/efeitos adversos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Injúria Renal Aguda/metabolismo , Receptores ErbB/metabolismo , Fatores de Transcrição/metabolismo , Leucemia/complicações , Leucemia/tratamento farmacológico , Traumatismo por Reperfusão/complicações , Isquemia/complicações , Reperfusão , Metiltransferases/metabolismo
8.
Exp Mol Pathol ; 134: 104869, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37690529

RESUMO

INTRODUCTION: Irisin plays an important role in regulating tissue stress, cardiac function, and inflammation. Integrin αvß5 was recently identified as a receptor for irisin to elicit its physiologic function. It remains unknown whether integrin αvß5 is required for irisin's function in modulating the physiologic response to hemorrhage. The objective of this study is to examine if integrin αvß5 contributes to the effects of irisin during the hemorrhagic response. METHODS: Hemorrhage was induced in mice by achieving a mean arterial blood pressure of 35-45 mmHg for one hour, followed by two hours of resuscitation. Irisin (0.5  µg/kg) was administrated to assess its pharmacologic effects in hemorrhage. Cilengitide, a cyclic Arg-Gly-Asp peptide (cRGDyK) which is an inhibitor of integrin αvß5, or control RGDS (1 mg/kg) was administered with irisin. In another cohort of mice, the irisin-induced protective effect was examined after knocking down integrin ß5 with nanoparticle delivery of integrin ß5 sgRNA using CRSIPR/Cas-9 gene editing. Cardiac function and hemodynamics were measured using echocardiography and femoral artery catheterization, respectively. Systemic cytokine releases were measured using Enzyme-linked immunosorbent assay (ELISA). Histological analyses were used to determine tissue damage in myocardium, skeletal muscles, and lung tissues. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was carried out to assess apoptosis in tissues. RESULTS: Hemorrhage induced reduction of integrin αvß5 in skeletal muscles and repressed recovery of cardiac performance and hemodynamics. Irisin treatment led to significantly improved cardiac function, which was abrogated by treatment with Cilengitide or knockdown of integrin ß5. Furthermore, irisin resulted in a marked suppression of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1), muscle edema, and inflammatory cells infiltration in myocardium and skeletal muscles, which was attenuated by Cilengitide or knockdown of integrin ß5. Irisin-induced reduction of apoptosis in the myocardium, skeletal muscles, and lung, which were attenuated by either the inhibition of integrin αvß5, or knockdown of integrin ß5. CONCLUSION: Integrin αvß5 plays an important role for irisin in modulating the protective effect during hemorrhage.


Assuntos
Fibronectinas , Integrina alfaV , Animais , Humanos , Camundongos , Fibronectinas/genética , Fibronectinas/farmacologia , Hemorragia , RNA Guia de Sistemas CRISPR-Cas
9.
Ren Fail ; 45(1): 2237124, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37482915

RESUMO

BACKGROUND: The treatment of refractory nephrotic syndrome (RNS) is full of challenges and the role of rituximab (RTX) is not well-established, thus this study aims to demonstrate the role of RTX in RNS. METHODS: This was a multicenter retrospective study of all adult patients receiving RTX for RNS. Patients enrolled were divided into two groups according to pathological pattern: 20 patients as a group of podocytopathy (including minimal change disease [MCD] and focal and segmental glomerulosclerosis [FSGS]), and 26 patients as membranous nephropathy (MN) group. The remission rate, relapse rate, adverse effects, and predictors of remission were analyzed. RESULTS: A total of 75 patients received RTX for RNS and 48 were available for analysis after exclusion criteria. No significant difference in the remission rate at 6 or 12 months was observed between the MCD/FSGS and MN cases (p > 0.05). The median duration of the first complete remission (CR) was 1 month in the podocytopathy group and 12.5 months in the MN group. Three relapses were associated with infection as the ultimate outcome, and 6 out of 48 remained refractory representing a response rate of 87.5% in RNS. Clinical predictors of cumulative CR were estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 and mean arterial pressure (MAP) ≤103 mmHg at the beginning of therapy in patients with MN. No serious adverse effects were reported. CONCLUSIONS: RTX appears to be effective in RNS across various clinical and pathological subtypes, exhibiting a low relapse rate and minimal significant side effects in the majority of patients.


Assuntos
Glomerulonefrite Membranosa , Glomerulosclerose Segmentar e Focal , Nefrose Lipoide , Síndrome Nefrótica , Humanos , Adulto , Rituximab/efeitos adversos , Estudos Retrospectivos , Glomerulosclerose Segmentar e Focal/complicações , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Síndrome Nefrótica/tratamento farmacológico , Resultado do Tratamento , Nefrose Lipoide/tratamento farmacológico , Glomerulonefrite Membranosa/tratamento farmacológico , Recidiva , Doença Crônica , Imunossupressores/uso terapêutico
10.
Cell Death Dis ; 14(4): 253, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029114

RESUMO

Long-term follow-up data indicates that 1/4 patients with acute kidney injury (AKI) will develop to chronic kidney disease (CKD). Our previous studies have demonstrated that enhancer of zeste homolog 2 (EZH2) played an important role in AKI and CKD. However, the role and mechanisms of EZH2 in AKI-to-CKD transition are still unclear. Here, we demonstrated EZH2 and H3K27me3 highly upregulated in kidney from patients with ANCA-associated glomerulonephritis, and expressed positively with fibrotic lesion and negatively with renal function. Conditional EZH2 deletion or pharmacological inhibition with 3-DZNeP significantly improved renal function and attenuated pathological lesion in ischemia/reperfusion (I/R) or folic acid (FA) mice models (two models of AKI-to-CKD transition). Mechanistically, we used CUT & Tag technology to verify that EZH2 binding to the PTEN promoter and regulating its transcription, thus regulating its downstream signaling pathways. Genetic or pharmacological depletion of EZH2 upregulated PTEN expression and suppressed the phosphorylation of EGFR and its downstream signaling ERK1/2 and STAT3, consequently alleviating the partial epithelial-mesenchymal transition (EMT), G2/M arrest, and the aberrant secretion of profibrogenic and proinflammatory factors in vivo and vitro experiments. In addition, EZH2 promoted the EMT program induced loss of renal tubular epithelial cell transporters (OAT1, ATPase, and AQP1), and blockade of EZH2 prevented it. We further co-cultured macrophages with the medium of human renal tubular epithelial cells treated with H2O2 and found macrophages transferred to M2 phenotype, and EZH2 could regulate M2 macrophage polarization through STAT6 and PI3K/AKT pathways. These results were further verified in two mice models. Thus, targeted inhibition of EZH2 might be a novel therapy for ameliorating renal fibrosis after acute kidney injury by counteracting partial EMT and blockade of M2 macrophage polarization.


Assuntos
Injúria Renal Aguda , Proteína Potenciadora do Homólogo 2 de Zeste , Transição Epitelial-Mesenquimal , Macrófagos , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Injúria Renal Aguda/metabolismo , Apoptose , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fibrose , Pontos de Checagem da Fase G2 do Ciclo Celular , Peróxido de Hidrogênio/metabolismo , Rim/patologia , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Insuficiência Renal Crônica/patologia
11.
Front Immunol ; 14: 1137332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911746

RESUMO

Background: Peritoneal dialysis (PD) is an effective replacement therapy for end-stage renal disease patients. However, long-term exposure to peritoneal dialysate will lead to the development of peritoneal fibrosis. Epigenetics has been shown to play an important role in peritoneal fibrosis, but the role of histone deacetylases 8 (HDAC8) in peritoneal fibrosis have not been elucidated. In this research, we focused on the role and mechanisms of HDAC8 in peritoneal fibrosis and discussed the mechanisms involved. Methods: We examined the expression of HDAC8 in the peritoneum and dialysis effluent of continuous PD patients. Then we assessed the role and mechanism of HDAC8 in peritoneal fibrosis progression in mouse model of peritoneal fibrosis induced by high glucose peritoneal dialysis fluid by using PCI-34051. In vitro, TGF-ß1 or IL-4 were used to stimulate human peritoneal mesothelial cells (HPMCs) or RAW264.7 cells to establish two cell injury models to further explore the role and mechanism of HDAC8 in epithelial-mesenchymal transition (EMT) and macrophage polarization. Results: We found that HDAC8 expressed highly in the peritoneum from patients with PD-related peritonitis. We further revealed that the level of HDAC8 in the dialysate increased over time, and HDAC8 was positively correlated with TGF-ß1 and vascular endothelial growth factor (VEGF), and negatively correlated with cancer antigen 125. In mouse model of peritoneal fibrosis induced by high glucose dialysate, administration of PCI-34051 (a selective HDAC8 inhibitor) significantly prevented the progression of peritoneal fibrosis. Treatment with PCI-34051 blocked the phosphorylation of epidermal growth factor receptor (EGFR) and the activation of its downstream signaling pathways ERK1/2 and STAT3/HIF-1α. Inhibition of HDAC8 also reduced apoptosis. In vitro, HDAC8 silencing with PCI-34051 or siRNA inhibited TGF-ß1-induced EMT and apoptosis in HPMCs. In addition, continuous high glucose dialysate or IL-4 stimulation induced M2 macrophage polarization. Blockade of HDAC8 reduced M2 macrophage polarization by inhibiting the activation of STAT6 and PI3K/Akt signaling pathways. Conclusions: We demonstrated that HDAC8 promoted the EMT of HPMCs via EGFR/ERK1/2/STAT3/HIF-1α, induced M2 macrophage polarization via STAT6 and PI3K/Akt signaling pathways, and ultimately accelerated the process of peritoneal fibrosis.


Assuntos
Intervenção Coronária Percutânea , Fibrose Peritoneal , Animais , Humanos , Camundongos , Soluções para Diálise/farmacologia , Transição Epitelial-Mesenquimal , Receptores ErbB , Glucose/farmacologia , Histona Desacetilases , Interleucina-4/farmacologia , Macrófagos/metabolismo , Fibrose Peritoneal/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
12.
Front Pharmacol ; 14: 1123415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817133

RESUMO

Protein arginine methyltransferases (PRMTs) methylate a range of histone and non-histone substrates and participate in multiple biological processes by regulating gene transcription and post-translational modifications. To date, most studies on PRMTs have focused on their roles in tumors and in the physiological and pathological conditions of other organs. Emerging evidence indicates that PRMTs are expressed in the kidney and contribute to renal development, injury, repair, and fibrosis. In this review, we summarize the role and the mechanisms of PRMTs in regulating these renal processes and provide a perspective for future clinical applications.

13.
FASEB J ; 37(1): e22712, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527439

RESUMO

Mixed lineage leukemia 1 (MLL1), a histone H3 lysine 4 (H3K4) methyltransferase, exerts its enzymatic activity by interacting with menin and other proteins. It is unclear whether inhibition of the MLL1-menin interaction influences epithelial-mesenchymal transition (EMT), renal fibroblast activation, and renal fibrosis. In this study, we investigated the effect of disrupting MLL1-menin interaction on those events and mechanisms involved in a murine model of renal fibrosis induced by unilateral ureteral obstruction (UUO), in cultured mouse proximal tubular cells and renal interstitial fibroblasts. Injury to the kidney increased the expression of MLL1 and menin and H3K4 monomethylation (H3K4me1); MLL1 and menin were expressed in renal epithelial cells and renal interstitial fibroblasts. Inhibition of the MLL1-menin interaction by MI-503 administration or siRNA-mediated silencing of MLL1 attenuated UUO-induced renal fibrosis, and reduced expression of α-smooth muscle actin (α-SMA) and fibronectin. These treatments also inhibited UUO-induced expression of transcription factors Snail and Twist and transforming growth factor ß1 (TGF-ß1) while expression of E-cadherin was preserved. Moreover, treatment with MI-503 and transfection with either MLL siRNA or menin siRNA inhibited TGF-ß1-induced upregulation of α-SMA, fibronectin and Snail, phosphorylation of Smad3 and AKT, and downregulation of E-cadherin in cultured renal epithelial cells. Finally, MI-503 was effective in abrogating serum or TGFß1-induced transformation of renal interstitial fibroblasts to myofibroblasts in vitro. Taken together, these results suggest that targeting disruption of the MLL1-menin interaction attenuates renal fibrosis through inhibition of partial EMT and renal fibroblast activation.


Assuntos
Nefropatias , Leucemia , Obstrução Ureteral , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fibronectinas/metabolismo , Fibrose , Nefropatias/etiologia , Nefropatias/prevenção & controle , Nefropatias/metabolismo , Obstrução Ureteral/metabolismo , Rim/metabolismo , Transição Epitelial-Mesenquimal , Caderinas/metabolismo , RNA Interferente Pequeno/metabolismo
14.
Kidney Int ; 103(3): 544-564, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36581018

RESUMO

The aberrant expression of ubiquitin-specific protease 11 (USP11) is believed to be related to tumor progression. However, few studies have reported the biological function and clinical importance of USP11 in kidney fibrosis. Here, we demonstrated USP11 was highly upregulated in the kidneys from patients with chronic kidney disease and correlated positively with fibrotic lesion but negatively with kidney function. Conditional USP11 deletion or pharmacologic inhibition with Mitoxantrone attenuated pathological lesions and improved kidney function in both hyperuricemic nephropathy (HN)- and folic acid (FA)-induced mouse models of kidney fibrosis. Mechanistically, by RNA sequencing, USP11 was found to be involved in nuclear gene transcription of the epidermal growth factor receptor (EGFR). USP11 co-immunoprecipitated and co-stained with extra-nuclear EGFR and deubiquitinated and protected EGFR from proteasome-dependent degradation. Genetic or pharmacological depletion of USP11 facilitated EGFR degradation and abated augmentation of TGF-ß1 and downstream signaling. This consequently alleviated the partial epithelial-mesenchymal transition, G2/M arrest and aberrant secretome of profibrogenic and proinflammatory factors in uric acid-stimulated tubular epithelial cells. Moreover, USP11 deletion had anti-fibrotic and anti-inflammatory kidney effects in the murine HN and FA models. Thus, our study provides evidence supporting USP11 as a promising target for minimizing kidney fibrosis and that inhibition of USP11 has potential to be an effective strategy for patients with chronic kidney disease.


Assuntos
Transição Epitelial-Mesenquimal , Insuficiência Renal Crônica , Animais , Camundongos , Apoptose , Linhagem Celular Tumoral , Receptores ErbB , Fibrose , Pontos de Checagem da Fase G2 do Ciclo Celular , Rim/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteases Específicas de Ubiquitina/farmacologia
15.
Front Nutr ; 9: 933745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36562038

RESUMO

Background and aim: Protein-energy wasting (PEW) is critically associated with the reduced quality of life and poor prognosis of hemodialysis patients. However, the diagnosis criteria of PEW are complex, characterized by difficulty in estimating dietary intake and assessing muscle mass loss objectively. We performed a cross-sectional study in hemodialysis patients to propose a novel PEW prediction model. Materials and methods: A total of 380 patients who underwent maintenance hemodialysis were enrolled in this cross-sectional study. The data were analyzed with univariate and multivariable logistic regression to identify influencing factors of PEW. The PEW prediction model was presented as a nomogram by using the results of logistic regression. Furthermore, receiver operating characteristic (ROC) and decision curve analysis (DCA) were used to test the prediction and discrimination ability of the novel model. Results: Binary logistic regression was used to identify four independent influencing factors, namely, sex (P = 0.03), triglycerides (P = 0.009), vitamin D (P = 0.029), and NT-proBNP (P = 0.029). The nomogram was applied to display the value of each influencing factor contributed to PEW. Then, we built a novel prediction model of PEW (model 3) by combining these four independent variables with part of the International Society of Renal Nutrition and Metabolism (ISRNM) diagnostic criteria including albumin, total cholesterol, and BMI, while the ISRNM diagnostic criteria served as model 1 and model 2. ROC analysis of model 3 showed that the area under the curve was 0.851 (95%CI: 0.799-0.904), and there was no significant difference between model 3 and model 1 or model 2 (all P > 0.05). DCA revealed that the novel prediction model resulted in clinical net benefit as well as the other two models. Conclusion: In this research, we proposed a novel PEW prediction model, which could effectively identify PEW in hemodialysis patients and was more convenient and objective than traditional diagnostic criteria.

16.
Front Endocrinol (Lausanne) ; 13: 989305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339432

RESUMO

Histone deacetylase 11 (HDAC11) is the only member of the class IV HDAC, and the latest member identified. It is highly expressed in brain, heart, kidney and some other organs, and located in mitochondria, cytoplasm and nuclei, depending on the tissue and cell types. Although studies in HDAC11 total knockout mice suggest its dispensable features for tissue development and life, it participates in diverse pathophysiological processes, such as DNA replication, tumor growth, immune regulation, oxidant stress injury and neurological function of cocaine. Recent studies have shown that HDAC11 is also critically involved in the pathogenesis of some metabolic diseases, including obesity, diabetes and complications of diabetes. In this review, we summarize the recent progress on the role and mechanism of HDAC11 in the regulation of metabolic disorders, with the focus on its regulation on adipogenesis, lipid metabolism, metabolic inflammation, glucose tolerance, immune responses and energy consumption. We also discuss the property and selectivity of HDAC11 inhibitors and their applications in a variety of in vitro and in vivo models of metabolic disorders. Given that pharmacological and genetic inhibition of HDAC11 exerts a beneficial effect on various metabolic disorders, HDAC11 may be a potential therapeutic target to treat chronic metabolic diseases.


Assuntos
Histona Desacetilases , Doenças Metabólicas , Camundongos , Animais , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Doenças Metabólicas/tratamento farmacológico , Camundongos Knockout , Obesidade/genética , Inflamação/genética
17.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36297305

RESUMO

Irisin, a cleaved product of the fibronectin type III domain containing protein-5, is produced in the muscle tissue, which plays an important role in modulating insulin resistance. However, it remains unknown if irisin provides a protective effect against the detrimental outcomes of hemorrhage. Hemorrhages were simulated in male CD-1 mice to achieve a mean arterial blood pressure of 35-45 mmHg, followed by resuscitation. Irisin (50 ng/kg) and the vehicle (saline) were administrated at the start of resuscitation. Cardiac function was assessed by echocardiography, and hemodynamics were measured through femoral artery catheterization. A glucose tolerance test was used to evaluate insulin sensitivity. An enzyme-linked immunosorbent assay was performed to detect inflammatory factors in the muscles and blood serum. Western blot was carried out to assess the irisin production in skeletal muscles. Histological analyses were used to determine tissue damage and active-caspase 3 apoptotic signals. The hemorrhage suppressed cardiac performance, as indicated by a reduced ejection fraction and fractional shortening, which was accompanied by enhanced insulin resistance and hyperinsulinemia. Furthermore, the hemorrhage resulted in a marked decrease in irisin and an increase in the production of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1). Additionally, the hemorrhage caused marked edema, inflammatory cell infiltration and active-caspase 3 positive signals in skeletal muscles and cardiac muscles. Irisin treatment led to a significant improvement in the cardiac function of animals exposed to a hemorrhage. In addition, irisin treatment improved insulin sensitivity, which is consistent with the suppressed inflammatory cytokine secretion elicited by hemorrhages. Furthermore, hemorrhage-induced tissue edema, inflammatory cell infiltration, and active-caspase 3 positive signaling were attenuated by irisin treatment. The results suggest that irisin protects against damage from a hemorrhage through the modulation of insulin sensitivity.

18.
Cell Death Dis ; 13(9): 770, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068197

RESUMO

Mixed lineage leukemia 1 (MLL1) is a histone H3 lysine 4 (H3K4) methyltransferase that interacts with WD repeat domain 5 (WDR5) to regulate cell survival, proliferation, and senescence. The role of MLL1 in the pathogenesis of acute kidney injury (AKI) is unknown. In this study, we demonstrate that MLL1, WDR5, and trimethylated H3K4 (H3K4me3) were upregulated in renal tubular cells of cisplatin-induced AKI in mice, along with increased phosphorylation of p53 and decreased expression of E-cadherin. Administration of MM102, a selective MLL1/WDR5 complex inhibitor, improved renal function and attenuated tubular injury and apoptosis, while repressing MLL1, WDR5, and H3K4me3, dephosphorylating p53 and preserving E-cadherin. In cultured mouse renal proximal tubular cells (RPTCs) exposed to cisplatin, treatment with MM102 or transfection with siRNAs for either MLL1 or WDR5 also inhibited apoptosis and p53 phosphorylation while preserving E-cadherin expression; p53 inhibition with Pifithrin-α lowered cisplatin-induced apoptosis without affecting expression of MLL1, WDR5, and H3K4me3. Interestingly, silencing of E-cadherin offset MM102's cytoprotective effects, but had no effect on p53 phosphorylation. These findings suggest that MLL1/WDR5 activates p53, which, in turn, represses E-cadherin, leading to apoptosis during cisplatin-induced AKI. Further studies showed that MM102 effectively inhibited cisplatin-triggered DNA damage response (DDR), as indicated by dephosphorylation of ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR) proteins, dephosphorylation of checkpoint kinase 1 and 2 (Chk1 and Chk2); depression of γ-H2AX; and restrained cell cycle arrest, as evidenced by decreased expression of p21 and phospho-histone H3 at serine 10 in vitro and in vivo. Overall, we identify MLL1 as a novel DDR regulator that drives cisplatin-induced RPTC apoptosis and AKI by modulating the MLL1/WDR5-/ATR/ATM-Chk-p53-E-cadherin axis. Targeting the MLL1/WDR5 complex may have a therapeutic potential for the treatment of AKI.


Assuntos
Injúria Renal Aguda , Leucemia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Animais , Apoptose , Caderinas/genética , Caderinas/metabolismo , Cisplatino/farmacologia , Histona Metiltransferases/metabolismo , Histonas/metabolismo , Rim/metabolismo , Leucemia/tratamento farmacológico , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
Kidney Dis (Basel) ; 8(4): 319-333, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36157259

RESUMO

Background: A multiple-target tyrosine kinase inhibitor, nintedanib, which is approved for treatment of interstitial pulmonary disease, has been demonstrated to have anti-fibrotic activity outside of the lungs. We explored its therapeutic effect in a murine model of peritoneal fibrosis. Methods: Daily intraperitoneal injections of chlorhexidine gluconate (CG) induced peritoneal fibrosis in mice. The effects of delayed administration of nintedanib (given at day 21 after CG injection and then given daily for 14 days) were determined by immunohistochemical staining, ELISA, and immunoblot analysis. Results: Delayed administration of nintedanib significantly inhibited peritoneal fibrosis progression as indicated by decreasing deposition and expression of extracellular matrix (ECM) proteins (fibronectin and type I collagen). Treatment with nintedanib also upregulated MMP-2 and reciprocally downregulated TIMP-2, along with reducing expression of α-SMA, ß-vimentin, and two transcription factors (Snail and Twist), and retaining E-cadherin expression. Nintedanib also inhibited co-expression of ß-vimentin with Snail or Twist as shown by immunofluorescent staining. Moreover, nintedanib decreased the number of CD31-positive blood vessels and CD31 expression in the injured peritoneum. Moreover, delayed application of nintedanib inhibited the expression of several cytokines/chemokines, including monocyte chemoattractant protein-1, tumor necrosis factor-α, interleukin-1ß (IL-1ß), and IL-6, and infiltration of CD68+ macrophages to the injured peritoneum. Finally, nintedanib blocked phosphorylation of STAT3, NF-κB, and Smad3 during the development of peritoneal fibrosis. Conclusions: Delayed administration of nintedanib inhibits progression of peritoneal fibrosis and partially reverses established peritoneal fibrosis by attenuating epithelial-mesenchymal transition, inflammation, and angiogenesis, as well as promoting ECM degradation. We conclude that nintedanib has a therapeutic potential to treat peritoneal fibrosis.

20.
Front Pharmacol ; 13: 829630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046818

RESUMO

The histone methyltransferase SET and MYND domain protein 2 (SMYD2) has been implicated in tumorigenesis through methylating histone H3 at lysine36 (H3K36) and some non-histone substrates. Currently, the role of SMYD2 in acute kidney injury (AKI) remains unknown. Here, we investigated the effects of AZ505, a highly selective inhibitor of SMYD2, on the development of AKI and the mechanisms involved in a murine model of cisplatin-induced AKI. SMYD2 and trimethylated histone H3K36 (H3K36Me3) were highly expressed in the kidney following cisplatin treatment; administration of AZ505 remarkedly inhibited their expression, along with improving kidney function and ameliorating kidney damage. AZ505 also attenuated kidney tubular cell injury and apoptosis as evidenced by diminished the expression of neutrophil gelatinase associated lipocalin (NGAL) and kidney injury molecule (Kim-1), reduced the number of TUNEL positive cells, decreased the expression of cleaved caspase-3 and the BAX/BCL-2 ratio in injured kidneys. Moreover, AZ505 inhibited cisplatin-induced phosphorylation of p53, a key driver of kidney cell apoptosis and reduced expression of p21, a cell cycle inhibitor. Meanwhile, AZ505 promoted expression of proliferating cell nuclear antigen and cyclin D1, two markers of cell proliferation. Furthermore, AZ505 was effective in suppressing the phosphorylation of STAT3 and NF-κB, two transcriptional factors associated with kidney inflammation, attenuating the expression of monocyte chemoattractant protein-1 and intercellular cell adhesion molecule-1 and reducing infiltration of F4/80+ macrophages to the injured kidney. Finally, in cultured HK-2 cells, silencing of SMYD2 by specific siRNA inhibited cisplatin-induced apoptosis of kidney tubular epithelial cells. Collectively, these results suggests that SMYD2 is a key determinant of cisplatin nephrotoxicity and targeting SMYD2 protects against cisplatin-induced AKI by inhibiting apoptosis and inflammation and promoting cell proliferation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...