Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 24(7): e13968, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36999753

RESUMO

BACKGROUND AND OBJECTIVE: Cone-beam computed tomography (CBCT) has become a more and more active cutting-edge topic in the international computed tomography (CT) research due to its advantages of fast scanning speed, high ray utilization rate and high precision. However, scatter artifacts affect the imaging performance of CBCT, which hinders its application seriously. Therefore, our study aimed to propose a novel algorithm for scatter artifacts suppression in thorax CBCT based on a feature fusion residual network (FFRN), where the contextual loss was introduced to adapt the unpaired datasets better. METHODS: In the method we proposed, a FFRN with contextual loss was used to reduce CBCT artifacts in the region of chest. Unlike L1 or L2 loss, the contextual loss function makes input images which are not aligned strictly in space available, so we performed it on our unpaired datasets. The algorithm aims to reduce artifacts via studying the mapping between CBCT and CT images, where the CBCT images were set as the beginning while planning CT images as the end. RESULTS: The proposed method effectively removes artifacts in thorax CBCT, including shadow artifacts and cup artifacts which can be collectively referred to as uneven grayscale artifacts, in the CBCT image, and perform well in preserving details and maintaining the original shape. In addition, the average PSNR number of our proposed method achieved 27.7, which was higher than the methods this paper referred which indicated the significance of our method. CONCLUSIONS: What is revealed by the results is that our method provides a highly effective, rapid, and robust solution for the removal of scatter artifacts in thorax CBCT images. Moreover, as is shown in Table 1, our method has demonstrated better artifact reduction capability than other methods.


Assuntos
Artefatos , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Imagens de Fantasmas , Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Tórax/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
2.
J Appl Clin Med Phys ; 17(4): 307-319, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27455478

RESUMO

The purpose of this study was to reduce cupping artifacts and improve quantitative accuracy of the images in cone-beam CT (CBCT). An energy minimization method (EMM) is proposed to reduce cupping artifacts in reconstructed image of the CBCT. The cupping artifacts are iteratively optimized by using efficient matrix computations, which are verified to be numerically stable by matrix analysis. Moreover, the energy in our formulation is convex in each of its variables, which brings the robustness of the proposed energy minimization algorithm. The cupping artifacts are estimated as a result of minimizing this energy. The results indicate that proposed algorithm is effective for reducing the cupping artifacts and preserving the quality of the reconstructed image. The proposed method focuses on the reconstructed image without requiring any additional physical equipment; it is easily implemented and provides cupping correction using a single scan acquisition. The experimental results demonstrate that this method can successfully reduce the magnitude of cupping artifacts. The correction algorithm reported here may improve the uniformity of the reconstructed images, thus assisting the development of perfect volume visualization and threshold-based visualization techniques for reconstructed images.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA