Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602389

RESUMO

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Assuntos
Hemípteros , Orthobunyavirus , Vírus de RNA , Animais , Feminino , Filogenia , Insetos , Vírus de RNA/genética
2.
Ultrasonics ; 141: 107318, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38657431

RESUMO

Piezoelectric ultrasonic transducers, vital in medical devices and aerospace, often face challenges like resonant frequency shifts and impedance variations affecting their operational efficiency. This paper introduces a shunted piezoelectric transducer which could tune itself by digitally programmable inductance. A transformer and inductance-capacitance matching network ensures enhanced compatibility and impedance management. Proposing a fuzzy PI-based phase control method achieves resonant frequency tracking, synchronizing operational frequency with the transducer. In contrast to traditional methods, our approach enables faster and more precise fine-tuning, detecting and rectifying real-world deviations for optimal performance. A comprehensive experimental validation, based on fundamental knowledge analysis, confirms the feasibility and superiority of our proposed method, and the commonly encountered issues of resonance frequency deviation and impedance variation in high-power piezoelectric transducer applications can be effectively mitigated.

3.
Proc Natl Acad Sci U S A ; 121(16): e2318783121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588412

RESUMO

Communication between insects and plants relies on the exchange of bioactive molecules that traverse the species interface. Although proteinic effectors have been extensively studied, our knowledge of other molecules involved in this process remains limited. In this study, we investigate the role of salivary microRNAs (miRNAs) from the rice planthopper Nilaparvata lugens in suppressing plant immunity. A total of three miRNAs were confirmed to be secreted into host plants during insect feeding. Notably, the sequence-conserved miR-7-5P is specifically expressed in the salivary glands of N. lugens and is secreted into saliva, distinguishing it significantly from homologues found in other insects. Silencing miR-7-5P negatively affects N. lugens feeding on rice plants, but not on artificial diets. The impaired feeding performance of miR-7-5P-silenced insects can be rescued by transgenic plants overexpressing miR-7-5P. Through target prediction and experimental testing, we demonstrate that miR-7-5P targets multiple plant genes, including the immune-associated bZIP transcription factor 43 (OsbZIP43). Infestation of rice plants by miR-7-5P-silenced insects leads to the increased expression of OsbZIP43, while the presence of miR-7-5P counteracts this upregulation effect. Furthermore, overexpressing OsbZIP43 confers plant resistance against insects which can be subverted by miR-7-5P. Our findings suggest a mechanism by which herbivorous insects have evolved salivary miRNAs to suppress plant immunity, expanding our understanding of cross-kingdom RNA interference between interacting organisms.


Assuntos
Hemípteros , MicroRNAs , Oryza , Animais , Interferência de RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Saliva , Hemípteros/fisiologia , Imunidade Vegetal/genética , Oryza/genética
5.
Commun Biol ; 7(1): 257, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431762

RESUMO

Herbivorous insects employ an array of salivary proteins to aid feeding. However, the mechanisms behind the recruitment and evolution of these genes to mediate plant-insect interactions remain poorly understood. Here, we report a potential horizontal gene transfer (HGT) event from bacteria to an ancestral bug of Eutrichophora. The acquired genes subsequently underwent duplications and evolved through co-option. We annotated them as horizontal-transferred, Eutrichophora-specific salivary protein (HESPs) according to their origin and function. In Riptortus pedestris (Coreoidea), all nine HESPs are secreted into plants during feeding. The RpHESP4 to RpHESP8 are recently duplicated and found to be indispensable for salivary sheath formation. Silencing of RpHESP4-8 increases the difficulty of R. pedestris in probing the soybean, and the treated insects display a decreased survivability. Although silencing the other RpHESPs does not affect the salivary sheath formation, negative effects are also observed. In Pyrrhocoris apterus (Pyrrhocoroidea), five out of six PaHESPs are secretory salivary proteins, with PaHESP3 being critical for insect survival. The PaHESP5, while important for insects, no longer functions as a salivary protein. Our results provide insight into the potential origin of insect saliva and shed light on the evolution of salivary proteins.


Assuntos
Transferência Genética Horizontal , Heterópteros , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Heterópteros/genética , Heterópteros/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo
6.
Front Nutr ; 11: 1365580, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487634

RESUMO

Background: There is growing evidence that antioxidant-rich diets may prevent hyperlipidemia. However, the relationship between the Composite Dietary Antioxidant Index (CDAI) and hyperlipidemia is unclear. The CDAI is a composite score reflecting the antioxidant content of an individual's diet, and this study aimed to investigate the relationship between CDAI and hyperlipidemia. Methods: The study used the 2003-2018 National Health and Nutrition Examination Survey (NHANES) database for cross-sectional analyses and included 27,626 participants aged 20 years and older. The CDAI, which includes vitamins A, C, and E, zinc, selenium, and carotenoids, was calculated based on dietary intake reported in a 24-h recall interview. Hyperlipidemia was defined by the National Cholesterol Education Program (NCEP). Covariates included age, sex, race, education, marriage, household poverty-to-income ratio (PIR), glomerular filtration rate (eGFR), body mass index (BMI), energy, carbohydrates, total fat, cholesterol, smoking, alcohol consumption, hypertension, diabetes mellitus, coronary heart disease, and lipid-lowering medications. The association between CDAI and hyperlipidemia was explored through multiple logistic regression analyses and smoothed curve fitting. We also performed subgroup analyses and interaction tests to verify the relationship's stability. Results: After adjusting for potential confounders, CDAI was negatively associated with the risk of developing hyperlipidemia (OR 0.98, 95% CI 0.96-0.99, p < 0.01). The results of weighted regression models stratified by quartiles of CDAI (-8.664 ≤ Q1 ≤ -2.209, -2.209 < Q2 ≤ -0.002, -0.002 < Q3 ≤ 2.774, 2.774 < Q4 ≤ 124.284), fully adjusted for confounding variables, indicated that compared with the bottom quartile (Q1) of the CDAI, Q2, Q3, and Q4 of participants had a lower advantage ratio (Q2: OR 0.91, 95% CI 0.78-1.06, p < 0.21; Q3: OR 0.85, 95% CI 0.73-1.00, p < 0.05; and Q4: OR 0.77, 95% CI 0.64-0.94, p < 0.01), which was confirmed by a test for trend (p < 0.05). Smoothed curve fit analysis showed linearity (p for non-linear = 0.0912). In summary, there is a linear negative relationship between CDAI and the risk of developing hyperlipidemia. Subgroup analyses by age, sex, ethnicity, education level, marriage, tobacco status, alcoholic drinking, body mass index (BMI), hypertension, and diabetes did not indicate strong interactions. Conclusion: In this large cross-sectional study, there was a linear negative association between CDAI and hyperlipidemia among US adults. Therefore increase antioxidant rich foods in your life as a prevention of hyperlipidemia.

7.
Sci Rep ; 14(1): 6225, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486094

RESUMO

Saliva, an oral secretion primarily originating from salivary glands (SGs), exert critical roles in the ongoing evolutionary interaction between insects and plants. However, identifying insect salivary components poses challenges due to the tiny size of insects, low secretion amounts, and the propensity for degradation after secretion. In this study, we developed a transcriptome-based approach to comprehensively analyze the salivary proteins of the short-headed planthopper, Epeurysa nawaii, a species with unique feeding habits on bamboo. A total of 165 salivary proteins were identified, with 114 secretory genes highly and specifically expressed in SGs. Consistent with most phloem-feeding insects, digestive enzymes, calcium-binding proteins, oxidoreductases, and a few previously reported salivary effectors were ubiquitously distributed in E. nawaii saliva. However, we also identified a substantial portion of salivary proteins exhibiting taxonomy specificity, including 60 E. nawaii-specific and 62 Delphacidae-specific proteins. These taxonomy-restricted proteins potentially play a role in insect adaptation to specific host plants. Our study provides an efficient pipeline for salivary protein identification and serves as a valuable resource for the functional characterization of effectors.


Assuntos
Hemípteros , Glândulas Salivares , Animais , Glândulas Salivares/metabolismo , Saliva/metabolismo , Hemípteros/metabolismo , Transcriptoma , Proteínas e Peptídeos Salivares/metabolismo , Proteínas de Insetos/metabolismo
8.
Hum Brain Mapp ; 45(5): e26656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530116

RESUMO

Gray matter (GM) atrophy and white matter (WM) lesions may contribute to cognitive decline in patients with delayed neurological sequelae (DNS) after carbon monoxide (CO) poisoning. However, there is currently a lack of evidence supporting this relationship. This study aimed to investigate the volume of GM, cortical thickness, and burden of WM lesions in 33 DNS patients with dementia, 24 DNS patients with mild cognitive impairment, and 51 healthy controls. Various methods, including voxel-based, deformation-based, surface-based, and atlas-based analyses, were used to examine GM structures. Furthermore, we explored the connection between GM volume changes, WM lesions burden, and cognitive decline. Compared to the healthy controls, both patient groups exhibited widespread GM atrophy in the cerebral cortices (for volume and cortical thickness), subcortical nuclei (for volume), and cerebellum (for volume) (p < .05 corrected for false discovery rate [FDR]). The total volume of GM atrophy in 31 subregions, which included the default mode network (DMN), visual network (VN), and cerebellar network (CN) (p < .05, FDR-corrected), independently contributed to the severity of cognitive impairment (p < .05). Additionally, WM lesions impacted cognitive decline through both direct and indirect effects, with the latter mediated by volume reduction in 16 subregions of cognitive networks (p < .05). These preliminary findings suggested that both GM atrophy and WM lesions were involved in cognitive decline in DNS patients following CO poisoning. Moreover, the reduction in the volume of DMN, VN, and posterior CN nodes mediated the WM lesions-induced cognitive decline.


Assuntos
Intoxicação por Monóxido de Carbono , Disfunção Cognitiva , Substância Branca , Humanos , Intoxicação por Monóxido de Carbono/complicações , Intoxicação por Monóxido de Carbono/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Atrofia , Progressão da Doença
9.
Acta Radiol ; : 2841851241228188, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342993

RESUMO

BACKGROUND: Current liver magnetic resonance elastography (MRE) scans often require adjustments to driver amplitude to produce acceptable images. This could lead to time wastage and the potential loss of an opportunity to capture a high-quality image. PURPOSE: To construct a linear regression model of individualized driver amplitude to improve liver MRE image quality. MATERIAL AND METHODS: Data from 95 liver MRE scans of 61 participants, including abdominal missing volume ratio (AMVR), breath-holding status, the distance from the passive driver on the skin surface to the liver edge (Dd-l), body mass index (BMI), and lateral deflection of the passive driver with respect to the human sagittal plane (Angle α), were continuously collected. The Spearman correlation analysis and lasso regression were conducted to screen the independent variables. Multiple linear regression equations were developed to determine the optimal amplitude prediction model. RESULTS: The optimal formula for linear regression models: driver amplitude (%) = -16.80 + 78.59 × AMVR - 11.12 × breath-holding (end of expiration = 1, end of inspiration = 0) + 3.16 × Dd-l + 1.94 × BMI + 0.34 × angle α, with the model passing the F test (F = 22.455, P <0.001) and R2 value of 0.558. CONCLUSION: The individualized amplitude prediction model based on AMVR, breath-holding status, Dd-l, BMI, and angle α is a valuable tool in liver MRE examination.

10.
BMC Genomics ; 25(1): 53, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212677

RESUMO

BACKGROUND: Saliva plays a crucial role in shaping the feeding behavior of insects, involving processes such as food digestion and the regulation of interactions between insects and their hosts. Cyrtorhinus lividipennis serves as a predominant natural enemy of rice pests, while Apolygus lucorum, exhibiting phytozoophagous feeding behavior, is a destructive agricultural pest. In this study, a comparative transcriptome analysis, incorporating the published genomes of C.lividipennis and A.lucorum, was conducted to reveal the role of salivary secretion in host adaptation. RESULTS: In contrast to A.lucorum, C.lividipennis is a zoophytophagous insect. A de novo genome analysis of C.lividipennis yielded 19,706 unigenes, including 16,217 annotated ones. On the other hand, A.lucorum had altogether 20,111 annotated genes, as obtained from the published official gene set (20,353 unigenes). Functional analysis of the top 1,000 salivary gland (SG)-abundant genes in both insects revealed that the SG was a dynamically active tissue engaged in protein synthesis and secretion. Predictions of other tissues and signal peptides were compared. As a result, 94 and 157 salivary proteins were identified in C.lividipennis and A.lucorum, respectively, and were categorized into 68 and 81 orthogroups. Among them, 26 orthogroups were shared, potentially playing common roles in digestion and detoxification, including several venom serine proteases. Furthermore, 42 and 55 orthogroups were exclusive in C.lividipennis and A.lucorum, respectively, which were exemplified by a hyaluronidase in C.lividipennis that was associated with predation, while polygalacturonases in A.lucorum were involved in mesophyll-feeding patterns. CONCLUSIONS: Findings in this study provide a comprehensive insight into saliva secretions in C.lividipennis and A.lucorum via a transcriptome approach, reflecting the intricate connections between saliva secretions and feeding behaviors. It is found that conserved salivary secretions are involved in shaping the overlapping feeding patterns, while a plethora of unique salivary secretions may drive the evolution of specific feeding behaviors crucial for their survival. These results enhance our understanding of the feeding mechanisms in different insects from the perspective of saliva and contribute to future environmentally friendly pest control by utilizing predatory insects.


Assuntos
Heterópteros , Transcriptoma , Animais , Heterópteros/genética , Glândulas Salivares , Perfilação da Expressão Gênica/métodos , Saliva
11.
Sensors (Basel) ; 23(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38139468

RESUMO

The resonant magnetoelectric (ME) effect of Fe78Si9B13/Pb(Zr,Ti)O3 (FeSiB/PZT) composites with a surface-modified Fe78Si9B13 amorphous alloy has been studied. The surface-modified FeSiB can improve the ME coefficient at the resonant frequency by optimizing the magnetomechancial power conversion efficiency. The maximum ME coefficient of the surface-modified ribbons combined with soft PZT (PZT5) is two-thirds larger than that of the composites with fully amorphous ribbons. Meanwhile, the maximum value of the ME coefficient with surface-modified FeSiB ribbons and hard PZT (PZT8) is one-third higher compared with the fully amorphous composites. In addition, experimental results of magnetomechanical coupling properties of FeSiB/PZT composites with or without piezoelectric layers indicate that the power efficiency of the composites first decreases and then increases with the increase in the number of FeSiB layers. When the surface crystalline FeSiB ribbons are combined with a commercially available hard piezoelectric ceramic plate, the maximum magnetoelectric coupling coefficient of the ME composite reaches 5522 V/(Oe*cm), of which the electromechanical resonant frequency is 23.89 kHz.

12.
Nat Commun ; 14(1): 7264, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945658

RESUMO

Non-retroviral endogenous viral elements (nrEVEs) are widely dispersed throughout the genomes of eukaryotes. Although nrEVEs are known to be involved in host antiviral immunity, it remains an open question whether they can be domesticated as functional proteins to serve cellular innovations in arthropods. In this study, we found that endogenous toti-like viral elements (ToEVEs) are ubiquitously integrated into the genomes of three planthopper species, with highly variable distributions and polymorphism levels in planthopper populations. Three ToEVEs display exon‒intron structures and active transcription, suggesting that they might have been domesticated by planthoppers. CRISPR/Cas9 experiments revealed that one ToEVE in Nilaparvata lugens, NlToEVE14, has been co-opted by its host and plays essential roles in planthopper development and fecundity. Large-scale analysis of ToEVEs in arthropod genomes indicated that the number of arthropod nrEVEs is currently underestimated and that they may contribute to the functional diversity of arthropod genes.


Assuntos
Artrópodes , Hemípteros , Animais , Artrópodes/genética , Hemípteros/genética , Retroviridae
13.
Mol Biol Evol ; 40(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37804524

RESUMO

Herbivorous insects such as whiteflies, planthoppers, and aphids secrete abundant orphan proteins to facilitate feeding. Yet, how these genes are recruited and evolve to mediate plant-insect interaction remains unknown. In this study, we report a horizontal gene transfer (HGT) event from fungi to an ancestor of Aleyrodidae insects approximately 42 to 190 million years ago. BtFTSP1 is a salivary protein that is secreted into host plants during Bemisia tabaci feeding. It targets a defensive ferredoxin 1 in Nicotiana tabacum (NtFD1) and disrupts the NtFD1-NtFD1 interaction in plant cytosol, leading to the degradation of NtFD1 in a ubiquitin-dependent manner. Silencing BtFTSP1 has negative effects on B. tabaci feeding while overexpressing BtFTSP1 in N. tabacum benefits insects and rescues the adverse effect caused by NtFD1 overexpression. The association between BtFTSP1 and NtFD1 is newly evolved after HGT, with the homologous FTSP in its fungal donor failing to interact and destabilize NtFD1. Our study illustrates the important roles of horizontally transferred genes in plant-insect interactions and suggests the potential origin of orphan salivary genes.


Assuntos
Afídeos , Hemípteros , Animais , Ferredoxinas/metabolismo , Plantas/metabolismo , Hemípteros/genética , Nicotiana/genética , Nicotiana/metabolismo , Afídeos/metabolismo , Proteínas e Peptídeos Salivares/genética
14.
Dig Dis Sci ; 68(12): 4521-4535, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37794295

RESUMO

BACKGROUND: Microvascular invasion (MVI) is a predictor of recurrence and overall survival in hepatocellular carcinoma (HCC), the preoperative diagnosis of MVI through noninvasive methods play an important role in clinical treatment. AIMS: To investigate the effectiveness of radiomics features in evaluating MVI in HCC before surgery. METHODS: We included 190 patients who had undergone contrast-enhanced MRI and curative resection for HCC between September 2015 and November 2021 from two independent institutions. In the training cohort of 117 patients, MVI-related radiomics models based on multiple sequences and multiple regions from MRI were constructed. An independent cohort of 73 patients was used to validate the proposed models. A final Clinical-Imaging-Radiomics nomogram for preoperatively predicting MVI in HCC patients was generated. Recurrence-free survival was analyzed using the log-rank test. RESULTS: For tumor-extracted features, the performance of signatures in fat-suppressed T1-weighted images and hepatobiliary phase was superior to that of other sequences in a single-sequence model. The radiomics signatures demonstrated better discriminatory ability than that of the Clinical-Imaging model for MVI. The nomogram incorporating clinical, imaging and radiomics signature showed excellent predictive ability and achieved well-fitted calibration curves, outperforming both the Radiomics and Clinical-Radiomics models in the training and validation cohorts. CONCLUSIONS: The Clinical-Imaging-Radiomics nomogram model of multiple regions and multiple sequences based on serum alpha-fetoprotein, three MRI characteristics, and 12 radiomics signatures achieved good performance for predicting MVI in HCC patients, which may help clinicians select optimal treatment strategies to improve subsequent clinical outcomes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Nomogramas , Estudos Retrospectivos , Invasividade Neoplásica/patologia , Prognóstico , Imageamento por Ressonância Magnética/métodos
15.
Comput Struct Biotechnol J ; 21: 4312-4321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711182

RESUMO

Recent advancements in next-generation sequencing (NGS) technology and bioinformatics tools have revealed a vast array of viral diversity in insects, particularly RNA viruses. However, our current understanding of insect RNA viruses has primarily focused on hematophagous insects due to their medical importance, while research on the viromes of agriculturally relevant insects remains limited. This comprehensive review aims to address the gap by providing an overview of the diversity of RNA viruses in agricultural pests and beneficial insects within the agricultural ecosystem. Based on the NCBI Virus Database, over eight hundred RNA viruses belonging to 39 viral families have been reported in more than three hundred agricultural insect species. These viruses are predominantly found in the insect orders of Hymenoptera, Hemiptera, Thysanoptera, Lepidoptera, Diptera, Coleoptera, and Orthoptera. These findings have significantly enriched our understanding of RNA viral diversity in agricultural insects. While further virome investigations are necessary to expand our knowledge to more insect species, it is crucial to explore the biological roles of these identified RNA viruses within insects in future studies. This review also highlights the limitations and challenges for the effective virus discovery through NGS and their potential solutions, which might facilitate for the development of innovative bioinformatic tools in the future.

16.
Genes (Basel) ; 14(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37628691

RESUMO

The whitefly Bemisia tabaci is one of the most destructive pests worldwide, and causes tremendous economic losses. Tobacco Nicotiana tabacum serves as a model organism for studying fundamental biological processes and is severely damaged by whiteflies. Hitherto, our knowledge of how tobacco perceives and defends itself against whiteflies has been scare. In this study, we analyze the gene expression patterns of tobacco in response to whitefly infestation. A total of 244 and 2417 differentially expressed genes (DEGs) were identified at 12 h and 24 h post whitefly infestation, respectively. Enrichment analysis demonstrates that whitefly infestation activates plant defense at both time points, with genes involved in plant pattern recognition, transcription factors, and hormonal regulation significantly upregulated. Notably, defense genes are more intensely upregulated at 24 h post infestation than at 12 h, indicating an increased immunity induced by whitefly infestation. In contrast, genes associated with energy metabolism, carbohydrate metabolism, ribosomes, and photosynthesis are suppressed, suggesting impaired plant development. Taken together, our study provides comprehensive insights into how plants respond to phloem-feeding insects, and offers a theoretical basis for better research on plant-insect interactions.


Assuntos
Hemípteros , Nicotiana , Animais , Nicotiana/genética , Hemípteros/genética , Transcriptoma/genética , Metabolismo Energético , Medo
17.
Commun Biol ; 6(1): 813, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542124

RESUMO

Insects have a limited host range due to genomic adaptation. Thysanoptera, commonly known as thrips, occupies distinct feeding habitats, but there is a lack of comparative genomic analyses and limited genomic resources available. In this study, the chromosome-level genome of Stenchaetothrips biformis, an oligophagous pest of rice, is assembled using multiple sequencing technologies, including PacBio, Illumina short-reads, and Hi-C technology. A 338.86 Mb genome is obtained, consisting of 1269 contigs with a contig N50 size of 381 kb and a scaffold N50 size of 18.21 Mb. Thereafter, 17,167 protein-coding genes and 36.25% repetitive elements are annotated. Comparative genomic analyses with two other polyphagous thrips, revealing contracted chemosensory-related and expanded stress response and detoxification gene families in S. biformis, potentially facilitating rice adaptation. In the polyphagous thrips species Frankliniella occidentalis and Thrips palmi, expanded gene families are enriched in metabolism of aromatic and anthocyanin-containing compounds, immunity against viruses, and detoxification enzymes. These expansion gene families play crucial roles not only in adapting to hosts but also in development of pesticide resistance, as evidenced by transcriptome results after insecticides treatment. This study provides a chromosome-level genome assembly and lays the foundation for further studies on thrips evolution and pest management.


Assuntos
Tisanópteros , Animais , Tisanópteros/genética , Adaptação ao Hospedeiro , Cromossomos , Genoma , Genômica/métodos
18.
Materials (Basel) ; 16(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37512265

RESUMO

Understanding the correlation between magnetomechanical coupling factors (k) and damping factors (Q-1) is a key pathway toward enhancing the magnetomechanical power conversion efficiency in laminated magnetoelectric (ME) composites by manipulating the magnetic and mechanical properties of Fe-based amorphous metals through engineering. The k and Q-1 factors of FeSiB amorphous ribbons annealed in air at different temperatures are investigated. It is found that k and Q-1 factors are affected by both magnetic and elastic properties. The magnetic and elastic properties are characterized in terms of the magnetomechanical power efficiency for low-temperature annealing. The k and Q-1 of FeSiB-based epoxied laminates with different stacking numbers show that a -3 dB bandwidth and Young's modulus are expressed in terms of the magnetomechanical power efficiency for high lamination stacking.

19.
Sensors (Basel) ; 23(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37300044

RESUMO

The atomic magnetometer is currently one of the most-sensitive sensors and plays an important role in applications for detecting weak magnetic fields. This review reports the recent progress of total-field atomic magnetometers that are one important ramification of such magnetometers, which can reach the technical level for engineering applications. The alkali-metal magnetometers, helium magnetometers, and coherent population-trapping magnetometers are included in this review. Besides, the technology trend of atomic magnetometers was analyzed for the purpose of providing a certain reference for developing the technologies in such magnetometers and for exploring their applications.


Assuntos
Campos Magnéticos , Tecnologia
20.
BMC Genomics ; 24(1): 353, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365539

RESUMO

BACKGROUND: As one of the components of visual photopigments in photoreceptor cells, opsin exhibits different spectral peaks and plays crucial roles in visual function. Besides, it is discovered to evolve other functions despite color vision. However, research on its unconventional function is limited nowadays. With the increase in genome database numbers, various numbers and types of opsins have been identified in insects due to gene duplications or losses. The Nilaparvata lugens (Hemiptera) is a rice pest known for its long-distance migration capability. In this study, opsins were identified in N. lugens and characterized by genome and transcriptome analyses. Meanwhile, RNA interference (RNAi) was carried out to investigate the functions of opsins, and then the Illumina Novaseq 6000 platform-based transcriptome sequencing was performed to reveal gene expression patterns. RESULTS: Four opsins belonging to G protein-coupled receptors were identified in the N. lugens genome, including one long-sensitive opsin (Nllw) together with two ultraviolet-sensitive opsins (NlUV1/2) and an additional new opsin with hypothesized UV peak sensitivity (NlUV3-like). A tandem array of NlUV1/2 on the chromosome suggested the presence of a gene duplication event, with similar exons distribution. Moreover, as revealed by spatiotemporal expression, the four opsins were highly expressed in eyes with age-different expression levels. Besides, RNAi targeting each of the four opsins did not significantly affect the survival of N. lugens in phytotron, but the silencing of Nllw resulted in the melanization of body color. Further transcriptome analysis revealed that silencing of Nllw resulted in up-regulation of a tyrosine hydroxylase gene (NlTH) and down-regulation of an arylalkylamine-N-acetyltransferases gene (NlaaNAT) in N. lugens, demonstrating that Nllw is involved in body color plastic development via the tyrosine-mediated melanism pathway. CONCLUSIONS: This study provides the first evidence in a Hemipteran insect that an opsin (Nllw) takes part in the regulation of cuticle melanization, confirming a cross-talk between the gene pathways underlying the visual system and the morphological differentiation in insects.


Assuntos
Hemípteros , Opsinas , Animais , Opsinas/genética , Genoma , Hemípteros/metabolismo , Transcriptoma , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...