Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(5): 2622-2633, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38700898

RESUMO

Early diagnosis of drug-induced kidney injury (DIKI) is essential for clinical treatment and intervention. However, developing a reliable method to trace kidney injury origins through retrospective studies remains a challenge. In this study, we designed ordered fried-bun-shaped Au nanocone arrays (FBS NCAs) to create microarray chips as a surface-enhanced Raman scattering (SERS) analysis platform. Subsequently, the principal component analysis (PCA)-two-layer nearest neighbor (TLNN) model was constructed to identify and analyze the SERS spectra of exosomes from renal injury induced by cisplatin and gentamycin. The established PCA-TLNN model successfully differentiated the SERS spectra of exosomes from renal injury at different stages and causes, capturing the most significant spectral features for distinguishing these variations. For the SERS spectra of exosomes from renal injury at different induction times, the accuracy of PCA-TLNN reached 97.8% (cisplatin) and 93.3% (gentamicin). For the SERS spectra of exosomes from renal injury caused by different agents, the accuracy of PCA-TLNN reached 100% (7 days) and 96.7% (14 days). This study demonstrates that the combination of label-free exosome SERS and machine learning could serve as an innovative strategy for medical diagnosis and therapeutic intervention.


Assuntos
Cisplatino , Ouro , Aprendizado de Máquina , Análise de Componente Principal , Análise Espectral Raman , Análise Espectral Raman/métodos , Animais , Ouro/química , Exossomos/química , Gentamicinas/análise , Nanopartículas Metálicas/química
2.
Front Physiol ; 13: 981750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091361

RESUMO

Clostridium autoethanogenum meal (CAM) is a novel single-cell protein, which is produced from bacteria using carbon monoxide (CO) as sole carbon source. To evaluate the efficiency of CAM as an alternative for dietary fish meal, a 56-days growth experiment was performed on juvenile turbot (Scophthalmus maximus L.) with initial average weight of 9.13 ± 0.02 g. Six iso-nitrogenous (crude protein, 51.0%) and iso-lipidic (crude lipid, 11.5%) diets were formulated with 0%, 15%, 30%, 45%, 60% and 80% dietary fish meal protein substituted by CAM protein, which were designated as CAM0 (the control group), CAM15, CAM30, CAM45, CAM60 and CAM80, respectively. Results showed that no significant differences were observed in survival rate (over 97.50%) among different dietary treatments (p > 0.05). The specific growth rate (SGR) was not significantly affected when replacement levels of dietary fish meal with CAM were less than 45% (p > 0.05). The feed intake (FI) was significantly linear reduced with increasing dietary CAM (p < 0.05), whereas no significant differences were observed in feed efficiency ratio (FER), protein efficiency ratio (PER) and protein retention (PR) among different dietary treatments (p > 0.05). With increasing dietary CAM, lipid retention (LR) and carcass lipid tended to be increased in both significantly linear and quadratic patterns (p < 0.05). The apparent digestibility coefficient (ADC) of crude protein and some essential amino acids, including threonine, valine, lysine, histidine and arginine, showed significantly linear increase with increasing dietary CAM (p < 0.05). Furthermore, with the increase of dietary CAM, the gene expression of intestinal peptide and amino acids transporters was first up-regulated and then down-regulated with significantly quadratic pattern (p < 0.05), peaking in fish fed with diets CAM30 or CAM45, which was similar to the expression of genes related protein degradation in muscle. For genes related to protein metabolism in liver and muscle, the expression of mammalian target of rapamycin (mtor) was not significantly affected by dietary CAM, while the general control nonderepressible 2 (gcn2) tended to be first up-regulated and then down-regulated with significantly quadratic pattern (p < 0.05). Apart from that, the lipid metabolism of turbot was also affected by high dietary CAM, evidenced by increased expression of hepatic genes related to lipogenesis as well as reduced expression of genes related to lipid oxidation and lipid transport. In conclusion, CAM can replace up to 45% fish meal protein in diet for juvenile turbot without significantly adverse effects on growth performance. But excessive dietary CAM would result in significant growth reduction, and excessive lipid deposition may also occur in fish fed diets with high levels of CAM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA