Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 1986-1992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33760739

RESUMO

Hypertension (HT), or high blood pressure is one of the most common and main causes in cardiovascular diseases, which is also related to a series of detrimental diseases in humans. Deficiencies in effective treatment in HT are often associated with a series of diseases including multi-infarct dementia, amputation, and renal failure. Therefore, identifying anti-hypertension peptides has the vital realistic significance. Although many bioactive peptides have been developed to reduce blood pressure, they are time-consuming and laborious. In views of the obstacles of the intrinsic methods in antihypertensive peptide (AHTP) classification, computational methods are suggested as a supplement to identify AHTPs. In this study, we develop a comprehensive feature representation algorithm based on pretrained model and convolutional neural network and apply the deep ensemble model to construct the prediction model. The new predictor is used to identify AHTPs in benchmark and independent datasets. It has been shown in the independent test set that the performance is better than the recent methods. Comparative results indicate that our model can shed some light on hypertension therapy and gains more insights of classifying AHTPs. The implements and codes can be found in https://github.com/yuanying566/AHPred-DE.


Assuntos
Anti-Hipertensivos , Proteínas , Algoritmos , Anti-Hipertensivos/farmacologia , Humanos , Redes Neurais de Computação , Peptídeos
2.
Artigo em Inglês | MEDLINE | ID: mdl-31957608

RESUMO

Anticancer peptides (ACPs) eliminate pathogenic bacteria and kill tumor cells, showing no hemolysis and no damages to normal human cells. This unique ability explores the possibility of ACPs as therapeutic delivery and its potential applications in clinical therapy. Identifying ACPs is one of the most fundamental and central problems in new antitumor drug research. During the past decades, a number of machine learning-based prediction tools have been developed to solve this important task. However, the predictions produced by various tools are difficult to quantify and compare. Therefore, in this article, we provide a comprehensive review of existing machine learning methods for ACPs prediction and fair comparison of the predictors. To evaluate current prediction tools, we conducted a comparative study and analyzed the existing ACPs predictor from 10 public literatures. The comparative results obtained suggest that Support Vector Machine-based model with features combination provided significant improvement in the overall performance, when compared to the other machine learning method-based prediction models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA