Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Vaccines (Basel) ; 12(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793729

RESUMO

Despite significant strides in vaccine research and the availability of vaccines for many infectious diseases, the threat posed by both known and emerging infectious diseases persists. Moreover, breakthrough infections following vaccination remain a concern. Therefore, the development of novel vaccines is imperative. These vaccines must exhibit robust protective efficacy, broad-spectrum coverage, and long-lasting immunity. One promising avenue in vaccine development lies in leveraging T-cells, which play a crucial role in adaptive immunity and regulate immune responses during viral infections. T-cell recognition can target highly variable or conserved viral proteins, and memory T-cells offer the potential for durable immunity. Consequently, T-cell-based vaccines hold promise for advancing vaccine development efforts. This review delves into the latest research advancements in T-cell-based vaccines across various platforms and discusses the associated challenges.

2.
Virol Sin ; 39(3): 414-421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677713

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, encodes several accessory proteins that have been shown to play crucial roles in regulating the innate immune response. However, their expressions in infected cells and immunogenicity in infected humans and mice are still not fully understood. This study utilized various techniques such as luciferase immunoprecipitation system (LIPS), immunofluorescence â€‹assay (IFA), and western â€‹blot (WB) to detect accessory protein-specific antibodies in sera of COVID-19 patients. Specific antibodies to proteins 3a, 3b, 7b, 8 and 9c can be detected by LIPS, but only protein 3a antibody was detected by IFA or WB. Antibodies against proteins 3a and 7b were only detected in ICU patients, which may serve as a marker for predicting disease progression. Further, we investigated the expression of accessory proteins in SARS-CoV-2-infected cells and identified the expressions of proteins 3a, 6, 7a, 8, and 9b. We also analyzed their ability to induce antibodies in immunized mice and found that only proteins 3a, 6, 7a, 8, 9b and 9c were able to induce measurable antibody productions, but these antibodies lacked neutralizing activities and did not protect mice from SARS-CoV-2 infection. Our findings validate the expression of SARS-CoV-2 accessory proteins and elucidate their humoral immune response, providing a basis for protein detection assays and their role in pathogenesis.


Assuntos
Anticorpos Antivirais , COVID-19 , Modelos Animais de Doenças , Imunidade Humoral , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Camundongos , Feminino , Camundongos Endogâmicos BALB C , Masculino , Pessoa de Meia-Idade , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Adulto , Idoso
3.
Chem Commun (Camb) ; 60(36): 4830-4833, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38619085

RESUMO

gem-Difluoroalkenes are widely used building blocks in fluorine chemistry. Herein, a metal-free photocatalytic amination and heteroarylation method of gem-difluoroalkenes with heteroaryl carboxylic acid oxime esters as substrates is reported. This environmentally benign reaction proceeds via radical-radical cross-coupling in energy-transfer-mediated photocatalysis and can be used in the rapid construction of heteroaryl difluoroethylamine scaffolds and late-stage modification of complex pharmaceutical structures.

4.
Adv Mater ; 36(23): e2313388, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38350631

RESUMO

Organic electrode materials (OEMs) have gathered extensive attention for aqueous zinc-ion batteries (AZIBs) due to their structural diversity and molecular designability. However, the reported research mainly focuses on the design of the planar configuration of OEMs and does not take into account the important influence of the spatial structure on the electrochemical properties, which seriously hamper the further performance liberation of OEMs. Herein, this work has designed a series of thioether-linked naphthoquinone-derived isomers with tunable spatial structures and applied them as the cathodes in AZIBs. The incomplete conjugated structure of the elaborately engineered isomers can guarantee the independence of the redox reaction of active groups, which contributes to the full utilization of active sites and high redox reversibility. In addition, the position isomerization of naphthoquinones on the benzene rings changes the zincophilic activity and redox kinetics of the isomers, signifying the importance of spatial structure on the electrochemical performance. As a result, the 2,2'-(1,4-phenylenedithio) bis(1,4-naphthoquinone) (p-PNQ) with the smallest steric hindrance and the most independent redox of active sites exhibits a high specific capacity (279 mAh g-1), an outstanding rate capability (167 mAh g-1 at 100 A g-1), and a long-term cycling lifetime (over 2800 h at 0.05 A g-1).

5.
Biochem Pharmacol ; 222: 116071, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387527

RESUMO

Inhibition of the human ubiquitin-specific protease 7 (USP7), the key deubiquitylating enzyme in regulating p53 protein levels, has been considered an attractive anticancer strategy. In order to enhance the cellular activity of FT671, scaffold hopping strategy was employed. This endeavor resulted in the discovery of YCH2823, a novel and potent USP7 inhibitor.YCH2823 demonstrated remarkable efficacy in inhibiting the growth of a specific subset of TP53 wild-type, -mutant, and MYCN-amplified cell lines, surpassing the potency of FT671 by approximately 5-fold. The mechanism of action of YCH2823 involves direct interaction with the catalytic domain of USP7, thereby impeding the cleavage of ubiquitinated substrates. An increase in the expression of p53 and p21, accompanied by G1 phase arrest and apoptosis, was observed upon treatment with YCH2823. Subsequently, the knockdown of p53 or p21 in CHP-212 cells exhibited a substantial reduction in sensitivity to YCH2823, as evidenced by a considerable increase in IC50 values up to 690-fold. Furthermore, YCH2823 treatment specifically enhanced the transcriptional and protein levels of BCL6 in sensitive cells. Moreover, a synergistic effect between USP7 inhibitors and mTOR inhibitors was observed, suggesting the possibility of novel therapeutic strategies for cancer treatment. In conclusion, YCH2823 exhibits potential as an anticancer agent for the treatment of both TP53 wild-type and -mutant tumors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
Org Lett ; 26(3): 713-718, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38214493

RESUMO

Sulfonamides are important structures in pharmaceuticals, agrochemicals, and organocatalysts, yet the rapid and benign synthesis of these compounds is still a great challenge. Herein we report a photoinduced method for synthesizing sulfonamides from (hetero)aryl carboxylic acid oxime esters. This reaction proceeds via one-pot cascade radical-radical cross-coupling by energy-transfer-mediated photocatalysis. A wide substrate scope including (hetero)aryl substrates and late-stage modification of pharmaceutical molecular entities reveal its generality.

7.
J Infect Dev Ctries ; 17(11): 1631-1635, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38064384

RESUMO

INTRODUCTION: It is a rare case of continuous ambulatory peritoneal dialysis-related peritonitis associated with Acremonium spp infection. CASE PRESENTATION: Symptoms of Acremonium infection peritonitis are hidden and atypical, leucocytes in ascites are moderately elevated, and general bacterial culture difficulty obtains positive results. In this report, a patient with peritoneal dialysis-related peritonitis caused by Acremonium species was successfully treated without catheter removal in our hospital. The organism species was cultured from a catheter and PD effluent fluid. The patient's peritonitis did not relapse within 6 months. CONCLUSIONS: Once a patient on peritoneal dialysis was infected with fungal peritonitis, the outcome was usually to remove the tube and stop peritoneal dialysis. In this case, our experience is that using a catheter-salvage therapy method, we can successfully cure PD-related peritonitis associated with Acremonium sp.


Assuntos
Acremonium , Diálise Peritoneal Ambulatorial Contínua , Peritonite , Humanos , Catéteres , Diálise Peritoneal Ambulatorial Contínua/efeitos adversos , Peritonite/microbiologia , Peritonite/terapia
8.
Signal Transduct Target Ther ; 8(1): 385, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37806990

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has had a significant impact on healthcare systems and economies worldwide. The continuous emergence of new viral strains presents a major challenge in the development of effective antiviral agents. Strategies that possess broad-spectrum antiviral activities are desirable to control SARS-CoV-2 infection. ACE2, an angiotensin-containing enzyme that prevents the overactivation of the renin angiotensin system, is the receptor for SARS-CoV-2. ACE2 interacts with the spike protein and facilitates viral attachment and entry into host cells. Yet, SARS-CoV-2 infection also promotes ACE2 degradation. Whether restoring ACE2 surface expression has an impact on SARS-CoV-2 infection is yet to be determined. Here, we show that the ACE2-spike complex is endocytosed and degraded via autophagy in a manner that depends on clathrin-mediated endocytosis and PAK1-mediated cytoskeleton rearrangement. In contrast, free cellular spike protein is selectively cleaved into S1 and S2 subunits in a lysosomal-dependent manner. Importantly, we show that the pan-PAK inhibitor FRAX-486 restores ACE2 surface expression and suppresses infection by different SARS-CoV-2 strains. FRAX-486-treated Syrian hamsters exhibit significantly decreased lung viral load and alleviated pulmonary inflammation compared with untreated hamsters. In summary, our findings have identified novel pathways regulating viral entry, as well as therapeutic targets and candidate compounds for controlling the emerging strains of SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Internalização do Vírus , Quinases Ativadas por p21 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , COVID-19/virologia , Citoesqueleto , Quinases Ativadas por p21/metabolismo , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
9.
Signal Transduct Target Ther ; 8(1): 170, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100798

RESUMO

Currently, the incidence and fatality rate of SARS-CoV-2 remain continually high worldwide. COVID-19 patients infected with SARS-CoV-2 exhibited decreased type I interferon (IFN-I) signal, along with limited activation of antiviral immune responses as well as enhanced viral infectivity. Dramatic progresses have been made in revealing the multiple strategies employed by SARS-CoV-2 in impairing canonical RNA sensing pathways. However, it remains to be determined about the SARS-CoV-2 antagonism of cGAS-mediated activation of IFN responses during infection. In the current study, we figure out that SARS-CoV-2 infection leads to the accumulation of released mitochondria DNA (mtDNA), which in turn triggers cGAS to activate IFN-I signaling. As countermeasures, SARS-CoV-2 nucleocapsid (N) protein restricts the DNA recognition capacity of cGAS to impair cGAS-induced IFN-I signaling. Mechanically, N protein disrupts the assembly of cGAS with its co-factor G3BP1 by undergoing DNA-induced liquid-liquid phase separation (LLPS), subsequently impairs the double-strand DNA (dsDNA) detection ability of cGAS. Taken together, our findings unravel a novel antagonistic strategy by which SARS-CoV-2 reduces DNA-triggered IFN-I pathway through interfering with cGAS-DNA phase separation.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , COVID-19/genética , DNA , DNA Helicases/genética , Interferon Tipo I/genética , Proteínas do Nucleocapsídeo/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , SARS-CoV-2/genética
10.
Mol Genet Genomics ; 298(4): 823-836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059908

RESUMO

Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.


Assuntos
COVID-19 , Ácidos Nucleicos Livres , Humanos , COVID-19/diagnóstico , Ácidos Nucleicos Livres/genética
11.
Asia Pac J Clin Nutr ; 32(1): 33-39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36997483

RESUMO

BACKGROUND AND OBJECTIVES: Observational studies have shown that energy restriction could be beneficial for controlling bodyweight in patients with polycystic ovary syndrome (PCOS). We aim to compare the effects of a high-protein diet (HPD), a high-protein and high-dietary fiber diet (HPHFD), and a calorie-restricted diet (CRD) on metabolic health and gut microbiota in overweight/obese PCOS patients. METHODS AND STUDY DESIGN: We will enroll a total of 90 overweight/obese PCOS patients into this eight-week open-label randomised controlled trial. Participants will be randomly assigned to three groups: CRD group (energy coefficient 20 kcal/kg.day, water ≥1500 mL, 0.8-1.2 g/kg protein, carbohydrate energize 55-60%, and fat energize 25-30%), HDP group (energy coefficient 20 kcal/kg.day, water ≥1500 mL, and 1.5-2.0 g/kg protein) and HPHFD group (based on the high protein diet with 15 g more dietary fiber supplement). The primary outcome is body weight, body fat percentage, and lean body mass. The secondary outcomes will include changes in blood lipids, inflammation, glucose tolerance, blood pressure, and gut microbiota compositions. Between-group differences in adiposity measurements at baseline will be compared using one-way analysis of variance (ANOVA) or Kruskal-Wallis test when appropriate. Within-group difference after 8-week intervention will be compared using paired t-test or Wilcoxon signed rank test. Between-group differences in adiposity measurements after 8-week diet intervention will be compared using linear mixed model and ANCOVA. The gut microbiota will be analyzed using 16S amplicon sequencing and the sequencing data will be analyzed using the standardized QIIME2 piperline.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Humanos , Sobrepeso/complicações , Sobrepeso/terapia , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/terapia , Redução de Peso , Obesidade/complicações , Obesidade/terapia , Peso Corporal , Fibras na Dieta , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Chem Commun (Camb) ; 59(17): 2437-2440, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36723296

RESUMO

Aqueous Zn-based batteries deliver thousands of cycles at high rates but poor recyclability at low rates. Herein, we reveal that this illogical phenomenon is attributed to the reconstructed electrode/electrolyte interface at high rates, wherein the condensed electrical double layer (EDL) and the tightly absorbed Zn2+ ions on the Zn electrode surface afford compact and corrosion-resistant Zn deposits.

13.
Proc Natl Acad Sci U S A ; 120(4): e2202820120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36652473

RESUMO

Human coronavirus 229E (HCoV-229E) and NL63 (HCoV-NL63) are endemic causes of upper respiratory infections such as the "common cold" but may occasionally cause severe lower respiratory tract disease in the elderly and immunocompromised patients. There are no approved antiviral drugs or vaccines for these common cold coronaviruses (CCCoV). The recent emergence of COVID-19 and the possible cross-reactive antibody and T cell responses between these CCCoV and SARS-CoV-2 emphasize the need to develop experimental animal models for CCCoV. Mice are an ideal experimental animal model for such studies, but are resistant to HCoV-229E and HCoV-NL63 infections. Here, we generated 229E and NL63 mouse models by exogenous delivery of their receptors, human hAPN and hACE2 using replication-deficient adenoviruses (Ad5-hAPN and Ad5-hACE2), respectively. Ad5-hAPN- and Ad5-hACE2-sensitized IFNAR-/- and STAT1-/- mice developed pneumonia characterized by inflammatory cell infiltration with virus clearance occurring 7 d post infection. Ad5-hAPN- and Ad5-hACE2-sensitized mice generated virus-specific T cells and neutralizing antibodies after 229E or NL63 infection, respectively. Remdesivir and a vaccine candidate targeting spike protein of 229E and NL63 accelerated viral clearance of virus in these mice. 229E- and NL63-infected mice were partially protected from SARS-CoV-2 infection, likely mediated by cross-reactive T cell responses. Ad5-hAPN- and Ad5-hACE2-transduced mice are useful for studying pathogenesis and immune responses induced by HCoV-229E and HCoV-NL63 infections and for validation of broadly protective vaccines, antibodies, and therapeutics against human respiratory coronaviruses including SARS-CoV-2.


Assuntos
COVID-19 , Resfriado Comum , Coronavirus Humano 229E , Coronavirus Humano NL63 , Humanos , Animais , Camundongos , Idoso , SARS-CoV-2 , Proteção Cruzada
14.
ACS Nano ; 16(12): 20730-20738, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36507930

RESUMO

Alkaline Zn-MnO2 batteries feature high security, low cost, and environmental friendliness while suffering from severe electrochemical irreversibility for both the Zn anode and MnO2 cathode. Although neutral electrolytes are supposed to improve the reversibility of the Zn anode, the MnO2 cathode indeed experiences a capacity degradation caused by the Jahn-Teller effect of the Mn3+ ion, thus shortening the lifespan of the neutral Zn-MnO2 batteries. Theoretically, the MnO2 cathode undergoes a highly reversible two-electron redox reaction of the MnO2/Mn2+ couple in strongly acidic electrolytes. However, acidic electrolytes would inevitably accelerate the corrosion of the Zn anode, making long-lived acidic Zn-MnO2 batteries impossible. Herein, to overcome the challenges faced by Zn-MnO2 batteries, we propose a hybrid Zn-MnO2 battery (HZMB) by coupling the neutral Zn anode with the acidic MnO2 cathode, wherein the neutral anode and acidic cathode are separated by a proton-shuttle-shielding and hydrophobic-ion-conducting membrane. Benefiting from the optimized reaction conditions for both the MnO2 cathode and Zn anode as well as the well-designed membrane, the HZMB exhibits a high working voltage of 2.05 V and a long lifespan of 2275 h (2000 cycles), breaking through the limitations of Zn-MnO2 batteries in terms of voltage and cycle life.

15.
Nat Commun ; 13(1): 5204, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057605

RESUMO

In addition to investigating the virology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), discovering the host-virus dependencies are essential to identify and design effective antiviral therapy strategy. Here, we report that the SARS-CoV-2 entry receptor, ACE2, conjugates with small ubiquitin-like modifier 3 (SUMO3) and provide evidence indicating that prevention of ACE2 SUMOylation can block SARS-CoV-2 infection. E3 SUMO ligase PIAS4 prompts the SUMOylation and stabilization of ACE2, whereas deSUMOylation enzyme SENP3 reverses this process. Conjugation of SUMO3 with ACE2 at lysine (K) 187 hampers the K48-linked ubiquitination of ACE2, thus suppressing its subsequent cargo receptor TOLLIP-dependent autophagic degradation. TOLLIP deficiency results in the stabilization of ACE2 and elevated SARS-CoV-2 infection. In conclusion, our findings suggest selective autophagic degradation of ACE2 orchestrated by SUMOylation and ubiquitination as a potential way to combat SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Autofagia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo
16.
Am J Cancer Res ; 12(8): 3679-3692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119846

RESUMO

Epigenomic-wide DNA methylation profiling holds the potential to reflect both electronic cigarette exposure-associated risks and individual poor health outcomes. However, a systemic study in animals or humans is still lacking. Using the Infinium Mouse Methylation BeadChip, we examined the DNA methylation status of white blood cells in male ApoE-/- mice after 14 weeks of electronic cigarette exposure with the InExpose system (2 hr/day, 5 days/week, 50% PG and 50% VG) with low (6 mg/ml) and high (36 mg/ml) nicotine concentrations. Our results indicate that electronic cigarette aerosol inhalation induces significant alteration of 8,985 CpGs in a dose-dependent manner (FDR<0.05); 7,389 (82.2%) of the CpG sites are annotated with known genes. Among the top 6 significant CpG sites (P-value<1e-8), 4 CpG sites are located in the known genes, and most (3/5) of these genes have been related to cigarette smoking. The other two CpGs are close to/associated with the Phc2 gene that was recently linked to smoking in a transcriptome-wide associations study. Furthermore, the gene set enrichment analysis highlights the activation of MAPK and 4 cardiomyocyte/cardiomyopathy-related signaling pathways (including adrenergic signaling in cardiomyocytes and arrhythmogenic right ventricular cardiomyopathy) following repeated electronic cigarette use. The MAPK pathway activation correlates well with our finding of increased cytokine mRNA expression after electronic cigarette exposure in the same batch of mice. Interestingly, two pathways related to mitochondrial activities, namely mitochondrial gene expression and mitochondrial translation, are also activated after electronic cigarette exposure. Elucidating the relationship between these pathways and the increased circulating mitochondrial DNA observed here will provide further insight into the cell-damaging effects of prolonged inhalation of e-cigarette aerosols.

17.
J Cell Biol ; 221(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35695893

RESUMO

Atherosclerosis, the major cause of myocardial infarction and stroke, results from converging inflammatory, metabolic, and biomechanical factors. Arterial lesions form at sites of low and disturbed blood flow but are suppressed by high laminar shear stress (LSS) mainly via transcriptional induction of the anti-inflammatory transcription factor, Kruppel-like factor 2 (Klf2). We therefore performed a whole genome CRISPR-Cas9 screen to identify genes required for LSS induction of Klf2. Subsequent mechanistic investigation revealed that LSS induces Klf2 via activation of both a MEKK2/3-MEK5-ERK5 kinase module and mitochondrial metabolism. Mitochondrial calcium and ROS signaling regulate assembly of a mitophagy- and p62-dependent scaffolding complex that amplifies MEKK-MEK5-ERK5 signaling. Blocking the mitochondrial pathway in vivo reduces expression of KLF2-dependent genes such as eNOS and inhibits vascular remodeling. Failure to activate the mitochondrial pathway limits Klf2 expression in regions of disturbed flow. This work thus defines a connection between metabolism and vascular inflammation that provides a new framework for understanding and developing treatments for vascular disease.


Assuntos
Células Endoteliais , Fatores de Transcrição Kruppel-Like , Mitocôndrias , Estresse Mecânico , Aterosclerose/patologia , Sistemas CRISPR-Cas , Sinalização do Cálcio , Células Endoteliais/metabolismo , Humanos , Inflamação , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MAP Quinase Quinase 5 , MAP Quinase Quinase Quinase 2 , MAP Quinase Quinase Quinase 3 , Mitocôndrias/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Espécies Reativas de Oxigênio
18.
Nat Commun ; 13(1): 2674, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562337

RESUMO

Emerging SARS-CoV-2 variants of concern (VOCs) harboring multiple mutations in the spike protein raise concerns on effectiveness of current vaccines that rely on the ancestral spike protein. Here, we design a quadrivalent mosaic nanoparticle vaccine displaying spike proteins from the SARS-CoV-2 prototype and 3 different VOCs. The mosaic nanoparticle elicits equivalent or superior neutralizing antibodies against variant strains in mice and non-human primates with only small reduction in neutralization titers against the ancestral strain. Notably, it provides protection against infection with prototype and B.1.351 strains in mice. These results provide a proof of principle for the development of multivalent vaccines against pandemic and potential pre-emergent SARS-CoV-2 variants.


Assuntos
COVID-19 , Nanopartículas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Camundongos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Combinadas
19.
J Geriatr Cardiol ; 19(1): 61-70, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35233224

RESUMO

BACKGROUND: Growing evidence have demonstrated that thyroid hormones have been involved in the processes of cardiovascular metabolism. However, the causal relationship of thyroid function and cardiometabolic health remains partly unknown. METHODS: The Mendelian randomization (MR) was used to test genetic, potentially causal relationships between instrumental variables and cardiometabolic traits. Genetic variants of free thyroxine (FT4) and thyrotropin (TSH) levels within the reference range were used as instrumental variables. Data for genetic associations with cardiometabolic diseases were acquired from the genome-wide association studies of the FinnGen, CARDIoGRAM and CARDIoGRAMplusC4D, CHARGE, and MEGASTROKE. This study was conducted using summary statistic data from large, previously described cohorts. Association between thyroid function and essential hypertension (EHTN), secondary hypertension (SHTN), hyperlipidemia (HPL), type 2 diabetes mellitus (T2DM), ischemic heart disease (IHD), myocardial infarction (MI), heart failure (HF), pulmonary heart disease (PHD), stroke, and non-rheumatic valve disease (NRVD) were examined. RESULTS: Genetically predicted FT4 levels were associated with SHTN (odds ratio = 0.48; 95% CI = 0.04-0.82,P = 0.027), HPL (odds ratio = 0.67; 95% CI = 0.18-0.88,P = 0.023), T2DM (odds ratio = 0.80; 95% CI = 0.42-0.86,P = 0.005), IHD (odds ratio = 0.85; 95% CI = 0.49-0.98,P = 0.039), NRVD (odds ratio = 0.75; 95% CI = 0.27-0.97,P = 0.039). Additionally, genetically predicted TSH levels were associated with HF (odds ratio = 0.82; 95% CI = 0.68-0.99,P = 0.042), PHD (odds ratio = 0.75; 95% CI = 0.32-0.82,P = 0.006), stroke (odds ratio = 0.95; 95% CI = 0.81-0.97,P = 0.007). However, genetically predicted thyroid function traits were not associated with EHTN and MI. CONCLUSIONS: Our study suggests FT4 and TSH are associated with cardiometabolic diseases, underscoring the importance of the pituitary-thyroid-cardiac axis in cardiometabolic health susceptibility.

20.
J Org Chem ; 87(5): 2730-2739, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35133834

RESUMO

A catalyst-induced defluorinative, alkylation or metal-free hydroalkylation of gem-difluoroalkenes enabled by visible light was developed. This protocol provided a mild and practical approach to important and novel monofluoroalkenes and difluoromethylene-containing compounds with moderate to excellent yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA