Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 120, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301940

RESUMO

In retrosynthetic planning, the huge number of possible routes to synthesize a complex molecule using simple building blocks leads to a combinatorial explosion of possibilities. Even experienced chemists often have difficulty to select the most promising transformations. The current approaches rely on human-defined or machine-trained score functions which have limited chemical knowledge or use expensive estimation methods for guiding. Here we propose an experience-guided Monte Carlo tree search (EG-MCTS) to deal with this problem. Instead of rollout, we build an experience guidance network to learn knowledge from synthetic experiences during the search. Experiments on benchmark USPTO datasets show that, EG-MCTS gains significant improvement over state-of-the-art approaches both in efficiency and effectiveness. In a comparative experiment with the literature, our computer-generated routes mostly matched the reported routes. Routes designed for real drug compounds exhibit the effectiveness of EG-MCTS on assisting chemists performing retrosynthetic analysis.

2.
Sensors (Basel) ; 21(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34283082

RESUMO

Synthesizing plans for a deformable object to transit from initial observations to goal observations, both of which are represented by high-dimensional data (namely "raw" data), is challenging due to the difficulty of learning abstract state representations of raw data and transition models of continuous states and continuous actions. Even though there have been some approaches making remarkable progress regarding the planning problem, they often neglect actions between observations and are unable to generate action sequences from initial observations to goal observations. In this paper, we propose a novel algorithm framework, namely AGN. We first learn a state-abstractor model to abstract states from raw observations, a state-generator model to generate raw observations from states, a heuristic model to predict actions to be executed in current states, and a transition model to transform current states to next states after executing specific actions. After that, we directly generate plans for a deformable object by performing the four models. We evaluate our approach in continuous domains and show that our approach is effective with comparison to state-of-the-art algorithms.


Assuntos
Algoritmos
3.
Sensors (Basel) ; 16(6)2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27271632

RESUMO

Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV) modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR) sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL) divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs) are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs) are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA