Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(15): 10984-10992, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578866

RESUMO

Dinitrogen (N2) activation and functionalization through N-N bond cleavage and N-C bond formation are of great interest and importance but remain highly challenging. We report here for the first time N2 cleavage and selective multicoupling with isocyanides in a dititanium dihydride framework. The reaction of a dinitrogen dititanium dihydride complex [{(acriPNP)Ti}2(µ-η1:η2-N2)(µ-H)2] (1) with an excess (four or more equivalents) of p-methoxyphenyl isocyanide at room temperature gave a novel amidoamidinatoguanidinate complex [(acriPNP)Ti{NC(═NR)NC(═NR)CH2NR}Ti(acriPNP)(CNR)] (2, acriPNP = 4,5-bis(diisopropylphosphino)-2,7,9,9-tetramethyl-9H-acridin-10-ide; R = p-MeOC6H4) through N2 splitting and coupling with three isocyanide molecules. When 1 equiv of p-methoxyphenyl isocyanide was used to react with 1 at -30 °C, the hydrogenation of the isocyanide unit by the two hydride ligands in 1 took place, affording an amidomethylene-bridged dititanium dinitrogen complex [{(acriPNP)Ti}2(µ-η1:η2-N2){µ-η1:η2-CH2N(p-MeOC6H4)}] (3), which upon reaction with another equivalent of p-methoxyphenyl isocyanide at room temperature gave an amidomethylene/nitrido/carbodiimido complex [(acriPNP)Ti(N═C═NR)(µ-N)(µ-η1:η2-CH2NR)Ti(acriPNP)] (4) through N2 cleavage and N═C bond formation. Further reaction of 4 with 1 equiv of p-methoxyphenyl isocyanide led to an unprecedented four-component (carbodiimido, nitrido, isocyanide, and amidomethylene) coupling, yielding an amidoamidinatoguanidinate complex [{(acriPNP)Ti}2{NC(═NR)NC(═NR)CH2NR}] (5), which on reaction with another equivalent of p-methoxyphenyl isocyanide afforded the isocyanide-coordinated analogue 2. The reaction of 1 with 2-naphthyl isocyanide also took place in a similar multicoupling fashion. Moreover, the cross-coupling reactions of the p-methoxyphenyl isocyanide-derived amidomethylene/nitrido/carbodiimido complex 4 with 2-naphthyl isocyanide, cyclohexyl isocyanide, and tert-butyl isocyanide were also achieved, which afforded the corresponding amidoamidinatoguanidinate products consisting of two different isocyanides. Density functional theory (DFT) calculations further elucidated the mechanistic details.

2.
J Am Chem Soc ; 146(14): 10187-10198, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38545960

RESUMO

The [3 + 2] or [4 + 2] annulation of α,ß-unsaturated aldimines with alkenes via ß'- or γ-allylic C(sp3)-H activation is, in principle, an atom-efficient route for the synthesis of five- or six-membered-ring cycloalkylamines, which are important structural motifs in numerous natural products, bioactive molecules, and pharmaceuticals. However, such a transformation has remained undeveloped to date probably due to the lack of suitable catalysts. We report herein for the first time the regio- and diastereoselective [3 + 2] and [4 + 2] annulations of α,ß-unsaturated imines with alkenes via allylic C(sp3)-H activation by half-sandwich rare-earth catalysts having different metal ion sizes. The reaction of α-methyl-substituted α,ß-unsaturated aldimines with alkenes by a C5Me4SiMe3-ligated scandium catalyst took place in a trans-diastereoselective [3 + 2] annulation fashion via C(sp3)-H activation at the α-methyl group (ß'-position), exclusively affording alkylidene-functionalized cyclopentylamines with excellent trans-diastereoselectivity. In contrast, the reaction of ß-methyl-substituted α,ß-unsaturated aldimines with alkenes by a C5Me5-ligated cerium catalyst proceeded in a cis-diastereoselective [4 + 2] annulation fashion via γ-allylic C(sp3)-H activation, selectively yielding multisubstituted 2-cyclohexenylamines with excellent cis-diastereoselectivity. The mechanistic details of these transformations have been elucidated by deuterium-labeling experiments, kinetic isotope effect studies, and the isolation and transformations of key reaction intermediates. This work offers an efficient and selective protocol for the synthesis of a new family of cycloalkylamine derivatives, featuring 100% atom efficiency, high regio- and diastereoselectivity, broad substrate scope, and an unprecedented reaction mechanism.

3.
Angew Chem Int Ed Engl ; 63(13): e202318203, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38226440

RESUMO

The search for efficient and selective methods for the divergent synthesis of multi-substituted aminotetralins is of much interest and importance. We report herein for the first time the diastereoselective [4+2] annulation of 2-methyl aromatic aldimines with alkenes via benzylic C(sp3 )-H activation by half-sandwich rare-earth catalysts, which constitutes an efficient route for the divergent synthesis of both trans and cis diastereoisomers of multi-substituted 1-aminotetralin derivatives from readily accessible aldimines and alkenes. The use of a scandium catalyst bearing a sterically demanding cyclopentadienyl ligand such as C5 Me4 SiMe3 or C5 Me5 exclusively afforded the trans-selective annulation products in the reaction of aldimines with styrenes and aliphatic alkenes. In contrast, the analogous yttrium catalyst, whose metal ion size is larger than that of scandium, yielded the cis-selective annulation products. This protocol features 100 % atom-efficiency, excellent diastereoselectivity, broad substrate scope, and good functional group compatibility. The reaction mechanisms have been elucidated by kinetic isotope effect (KIE) experiments and the isolation and transformations of some key reaction intermediates.

4.
J Am Chem Soc ; 145(41): 22803-22813, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37797654

RESUMO

The direct use of dinitrogen (N2) as a building block for the synthesis of NN-containing organic compounds is of fundamental interest and practical importance but has remained a formidable challenge to date. Here, we report an unprecedented 1,4-conjugate (aza-Michael) addition of N2 to α,ß-unsaturated carbonyl compounds in a dititanium framework. The resulting hydrazinopropenolate products could be easily converted to diverse NN-containing organic compounds such as ß-hydrazine-functionalized esters and amides, pyrazolidinones, and pyrazolines depending on the types of Michael acceptors through protonation with MeOH. Further transformations of a hydrazinopropenolate titanium complex through C-C and N-C bond formations with electrophiles such as CO2 and benzaldehyde have also been achieved. The mechanistic details of the N2 addition reaction have been elucidated by computational studies, revealing the importance of redox-active metal centers in this event. This work showcases the potential of using N2 as a building block for the synthesis of NN-containing organic compounds through activation and functionalization in a molecular metal framework.

5.
Angew Chem Int Ed Engl ; 62(34): e202308488, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37405669

RESUMO

The asymmetric hydrophosphination of cyclopropenes with phosphines is of much interest and importance, but has remained hardly explored to date probably because of the lack of suitable catalysts. We report here the diastereo- and enantioselective hydrophosphination of 3,3-disubstituted cyclopropenes with phosphines by a chiral lanthanocene catalyst bearing the C2 -symmetric 5,6-dioxy-4,7-trans-dialkyl-substituted tetrahydroindenyl ligands. This protocol offers a selective and efficient route for the synthesis of a new family of chiral phosphinocyclopropane derivatives, featuring 100 % atom efficiency, good diastereo- and enantioselectivity, broad substrate scope, and no need for a directing group.

6.
Angew Chem Int Ed Engl ; 62(19): e202218606, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36744517

RESUMO

Dinitrogen (N2 ) activation and functionalization is of fundamental interest and practical importance. This review focuses on N2 activation and addition to unsaturated substrates, including carbon monoxide, carbon dioxide, heteroallenes, aldehydes, ketones, acid halides, nitriles, alkynes, and allenes, mediated by transition metal complexes, which afforded a variety of N-C bond formation products. Emphases are placed on the reaction modes and mechanisms. We hope that this work would stimulate further explorations in this challenging field.

7.
J Am Chem Soc ; 144(15): 6972-6980, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380823

RESUMO

The activation and functionalization of dinitrogen (N2) with carbon dioxide (CO2) are of great interest and importance but highly challenging. We report here for the first time the reaction of N2 with CO2 in a dititanium dihydride framework, which leads to N-C bond formation and N-N and C-O bond cleavage. Exposure of a dinitrogen dititanium hydride complex {[(acriPNP)Ti]2(µ2-η1:η2-N2)(µ2-H)2} (1) (acriPNP = 4,5-bis(diisopropylphosphino)-2,7,9,9-tetramethyl-9H-acridin-10-ide) to a CO2 atmosphere at room temperature rapidly yielded a nitrido/N,N-dicarboxylamido complex {[(acriPNP)Ti]2(µ2-N)[µ2-N(CO2)2]} (2, 28%) and a diisocyanato/dioxo complex {[(acriPNP)Ti]2(NCO)2(µ2-O)2} (3, 52%) with release of H2. When the reaction of 1 with CO2 (1 atm) was carried out at -50 °C, complex 2 was selectively formed in 82% yield within 5 min. Heating 2 at 80 °C under 1 atm CO2 for 30 min afforded 3 in 67% yield. When 1 was allowed to react with 1.5 equiv of CO2 at room temperature, an isocyanato/nitrido/oxo complex {[(acriPNP)Ti]2(NCO)(µ2-N)(µ2-O)} (4) was exclusively formed in 89% yield within 5 min. The reaction of 4 with CO2 at room temperature almost quantitatively yielded the dioxo/diisocyanato complex 3 within 5 min. The mechanistic details were clarified by the 15N- and 13C-labeled experiments and density functional theory (DFT) calculations, providing unprecedented insights into the reaction of N2 with CO2. A titanium-mediated cycle for the synthesis of trimethylsilyl isocyanate Me3SiNCO from N2, CO2, and Me3SiCl using H2 as a reducing agent was also established.

8.
Angew Chem Int Ed Engl ; 61(7): e202115996, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34913239

RESUMO

Here we report for the first time the regio- and diastereoselective [3+2] annulation of a wide range of aliphatic aldimines with alkenes via the activation of an unactivated ß-C(sp3 )-H bond by half-sandwich scandium catalysts. This protocol offers a straightforward and atom-efficient route for the synthesis of a new family of multi-substituted aminocyclopentane derivatives from easily accessible aliphatic aldimines and alkenes. The annulation of aldimines with styrenes exclusively afforded the 5-aryl-trans-substituted 1-aminocyclopentane derivatives with excellent diastereoselectivity through the 2,1-insertion of a styrene unit. The annulation of aldimines with aliphatic alkenes selectively gave the 4-alkyl-trans-substituted 1-aminocyclopentane products in a 1,2-insertion fashion. A catalytic amount of an appropriate amine such as adamantylamine (AdNH2 ) or dibenzylamine (Bn2 NH) showed significant effects on the catalyst activity and stereoselectivity.

9.
Dalton Trans ; 51(3): 918-926, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34935827

RESUMO

The mechanism of dinitrogen cleavage by a PNP-coordinated dititanium polyhydride complex has been computationally investigated. A "multi-state reactivity" scenario has been disclosed for the whole process of N2 coordination and activation. Remarkably, the H2 elimination prior to the N-N cleavage is accomplished by the coupling of two terminal hydrides, and planar PNP-pincer ligand could stabilize the corresponding transition state. Besides, the tetrahydrofuran (THF) solvent could also promote the H2 elimination due to the similar polarity of the corresponding intermediates or transition states to THF molecule.

10.
J Am Chem Soc ; 143(6): 2470-2476, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33529525

RESUMO

The enantioselective C-H alkenylation of ferrocenes with alkynes is, in principle, a straightforward and atom-efficient route for the construction of planar-chiral ferrocene scaffolds bearing alkene functionality but has remained scarcely explored to date. Here we report for the first time the highly enantioselective C-H alkenylation of quinoline- and pyridine-substituted ferrocenes with alkynes by a half-sandwich scandium catalyst. This protocol features broad substrate scope, high enantioselectivity, and 100% atom efficiency, selectively affording a new family of planar-chiral ferrocenes bearing N/alkene functionalities. The mechanistic details have been clarified by DFT analyses. The use of a quinoline/alkene-functionalized ferrocene product as a chiral ligand for asymmetric catalysis is also demonstrated.

11.
Chem Sci ; 11(37): 10159-10166, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34094279

RESUMO

The Simmons-Smith reaction offers a direct route for conversion of an alkene into a cyclopropane with a zinc carbenoid as the active intermediate. Zinc carbenoids, however, have never delivered a methylene unit to substrates with metal-carbon multiple bonds. Herein, we describe this type of reaction and the construction of three-membered rings has now been applied in organometallic systems by combining classical zinc carbenoid reagents with a range of structurally and electronically diverse metal carbynes. A variety of metallacyclopropene derivatives prepared in this way represent rare examples with σ-aromaticity in an unsaturated three-membered ring. The structures of such products are supported by experimental observations and theoretical calculations.

12.
iScience ; 19: 1214-1224, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31551198

RESUMO

Pincer complexes are a remarkably versatile family benefited from their stability, diversity, and tunability. Many of them contain aromatic organic rings at the periphery, and aromaticity plays an important role in their stability and properties, whereas their metallacyclic cores are not aromatic. Herein, we report rhodapentalenes, which can be viewed as pincer complexes in which the metallacyclic cores exhibit considerable aromatic character. Rhodapentalenes show good thermal stability, although the rhodium-carbon bonds in such compounds are fragile. Experimental and computational studies suggest that the stabilization of rigid CCC pincer architectures together with an intrinsic aromaticity is vital for these metallacyclic rhodium species. Dearomatization-aromatization reactions, corresponding to metal-ligand cooperation of classical aromatic pincer complexes, were observed in this system. These findings suggest a new concept for pincer chemistry, the internal aromaticity involving metal d-orbitals, which would be useful for exploiting the nature of construction motif and inspire further applications.

13.
Nat Commun ; 10(1): 1488, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940808

RESUMO

Polydentate complexes containing combinations of nitrogen and carbon (N and C) ligating atoms are among the most fundamental and ubiquitous molecules in coordination chemistry, yet the formation of such complexes with planar high-coordinate N/C sites remains challenging. Herein, we demonstrate an efficient route to access related complexes with tetradentate CCCN and pentadentate CCCCN and NCCCN cores by successive modification of the coordinating atoms in complexes with a CCCC core. Combined experimental and computational studies reveal that the rich reactivity of metal-carbon bonds and the inherent aromaticity of the metallacyclic skeletons play key roles in these transformations. This strategy addresses the paucity of synthetic approaches to mixed N/C planar pentadentate chelating species and provides valuable insights into the synthesis of carbon-based high-coordinate complexes. Furthermore, the resulting complexes are the examples of organometallic species with combined photoacoustic, photothermal, and sonodynamic properties, which makes them promising for application in related areas.

14.
Sci Adv ; 4(6): eaat0336, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29942859

RESUMO

The incorporation of a metal-carbon triple bond into a ring system is challenging because of the linear nature of triple bonds. To date, the synthesis of these complexes has been limited to those containing third-row transition metal centers, namely, osmium and rhenium. We report the synthesis and full characterization of the first cyclic metal carbyne complex with a second-row transition metal center, ruthenapentalyne. It shows a bond angle of 130.2(3)° around the sp-hybridized carbyne carbon, which represents the recorded smallest angle of second-row transition metal carbyne complexes, as it deviates nearly 50° from the original angle (180°). Density functional theory calculations suggest that the inherent aromatic nature of these metallacycles with bent Ru≡C-C moieties enhances their stability. Reactivity studies showed striking observations, such as ambiphilic reactivity, a metal-carbon triple bond shift, and a [2 + 2] cycloaddition reaction with alkyne and cascade cyclization reactions with ambident nucleophiles.

15.
Chem Commun (Camb) ; 54(32): 4009-4012, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29617019

RESUMO

Despite the excellent chemical properties of N-heterocycles, pyrido[1,2-α]azepine remains elusive due to its potential antiaromaticity and lability. Herein, we demonstrate the synthesis and characterization of the first bicyclic pyrido[1,2-α]azepine that leverages the coordination to the ruthenium center to promote the stability of N-bridged bicycle.

16.
Chemistry ; 24(10): 2389-2395, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29024141

RESUMO

Isolation of the simplest 4π three-membered heterocycles (1H-azirine, oxirene, thiirene, and selenirene) remains a big challenge due to their π-antiaromaticity and significant ring strain. Here we demonstrate that the incorporation of a transition-metal fragment could stabilize the antiaromatic selenirene and pentalene frameworks simultaneously by density functional theory (DFT) calculations. Experimental verification leads to the Se-containing metallapolycycles, osmapentaloselenirenes, with remarkable thermal stability. The osmaselenirene unit in the metallapolycycle is determined to be the first example of σ-aromaticity dominating in an unsaturated Se-containing ring. Our results not only highlight a remarkable stabilization by the transition-metal but also widen the scope of σ-aromaticity in unsaturated rings, which is traditionally reserved for the domain of π-aromaticity.

17.
Nat Commun ; 8(1): 1912, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203873

RESUMO

Although the formation of metal-carbon σ bonds is a fundamental principle in organometallic chemistry, the direct bonding of one organic molecule with one metal center to generate more than two metal-carbon σ bonds remains a challenge. Herein, we report an aromaticity-driven method whereby multiyne chains are used to construct three metal-carbon σ bonds in a one-pot reaction under mild conditions. In this method, multiyne chains act as ligand precursors capable of chelating an osmium center to yield planar metallapolycycles, which exhibit aromaticity and good stability. The direct assembly of various multiyne chains with commercially available metal complexes or even simple metal salts provides a convenient and efficient strategy for constructing all carbon-ligated chelates on the gram scale.

18.
Dalton Trans ; 45(3): 913-7, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26669561

RESUMO

The first ruthenabenzothiophenes have been achieved via the C-H activation of thiophene. These species feature high thermal stability and resistance of a moderate oxidant, which constitute valuable addition to the rare metallaaromatic containing second-row transition metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...