Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Neurol Res ; 46(5): 416-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577889

RESUMO

OBJECTIVE: Previous studies have revealed that Propane-2-sulfonic acid octadec-9-enyl-amide(N15) exerts a protective role in the inflammatory response after ischemic stroke and in neuronal damage. However, little is known about N15 in Alzheimer's disease (AD). The aim of this study was to investigate the effects of N15 on AD and explore the underlying molecular mechanism. METHODS: AD mice model was established by lateral ventricular injection with Aß25-35. N15 was daily intraperitoneal administered for 28 days. Morris Water Maze was used to evaluate the neurocognitive function of the mice. The expression of PPARα/γ, brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT3), ADAM10, PS1 and BACE1 were measured by qPCR. Aß amyloid in the hippocampus was measured by Congo red assay. Toluidine blue staining was used to detect the neuronal apoptosis. Protein levels of ADAM10, PS1 and BACE1 were determined using immunoblotting. RESULTS: N15 treatment significantly reduced neurocognitive dysfunction, which also significantly activated the expression of PPARα/γ at an optimal dose of 200 mg/kg. Administration of N15 alleviated the formation of Aß amyloid in the hippocampus of AD mice, enhanced the BDNF mRNA expression, decreased the mRNA and protein levels of PS1 and BACE1, upregulated ADAM10 mRNA and protein levels. CONCLUSION: N15 exerts its neuroprotective effects through the activation of PPARα/γ and may be a potential drug for the treatment of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , PPAR alfa , Ácidos Sulfônicos , Animais , Masculino , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Ácidos Sulfônicos/farmacologia , Agonistas PPAR-gama/farmacologia
2.
Phytother Res ; 37(11): 5341-5353, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37700535

RESUMO

BACKGROUND AND AIM: Our previous study has revealed that OEA promotes motor function recovery in the chronic stage of ischemic stroke. However, the neuroprotective mechanism of OEA on motor function recovery after stroke still is unexplored. Therefore, the aim of this study was to explore the effects of OEA treatment on angiogenesis, neurogenesis, and white matter repair in the peri-infarct region after cerebral ischemia. EXPERIMENTAL PROCEDURE: The adult male rats were subjected to 2 h of middle cerebral artery occlusion. The rats were treated with 10 and 30 mg/kg OEA or vehicle daily starting from day 2 after ischemia induction until they were sacrificed. KEY RESULTS AND CONCLUSIONS: The results revealed that OEA increased cortical angiogenesis, neural progenitor cells (NPCs) proliferation, migration, and differentiation. OEA treatment enhanced the survival of newborn neurons and oligodendrogenesis, which eventually repaired the cortical neuronal injury and improved motor function after ischemic stroke. Meanwhile, OEA treatment promoted the differentiation of oligodendrocyte progenitor cells (OPCs) and oligodendrogenesis by activating the PPARα signaling pathway. Our results showed that OEA restores motor function by facilitating cortical angiogenesis, neurogenesis, and white matter repair in rats after ischemic stroke. Therefore, we demonstrate that OEA facilitates functional recovery after ischemic stroke and propose the hypothesis that the long-term application of OEA mitigates the disability after stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Substância Branca , Ratos , Masculino , Animais , Substância Branca/metabolismo , PPAR alfa/metabolismo , Isquemia Encefálica/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Neurogênese , Diferenciação Celular , Oligodendroglia/metabolismo
3.
Eur J Pharmacol ; 957: 175982, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572942

RESUMO

Ischemic stroke is a leading cause of death and disability, and medical treatments for ischemic stroke are very limited. URB597 is a potent and selective inhibitor of fatty acid amide hydrolase (FAAH). However, the effect of URB597 on ischemic stroke and the underlying molecular mechanisms remain little known. In this study, focal cerebral ischemia was induced by transient middle cerebral artery occlusion in mice. Our results showed that URB597 dose-dependently improved neurological function and reduced brain infarct volume and brain edema 24 h after brain ischemia. The most effective dose was 1 mg/kg and the therapeutic time window was within 3 h after ischemic stroke. To further investigate the underlying mechanism, necroptosis and autophagy flux were detected by Western blot and/or immunofluorescence staining with or without chloroquine, an autophagic flux inhibitor. Our results showed that URB597 promoted autophagic flux and reduced neuronal necroptosis after brain ischemia and these effects could be abolished by chloroquine. In addition, we found that peroxisome proliferator-activated receptor α (PPARα) antagonist GW6471 partly abolished the effect of URB597 against brain ischemia and URB597 upregulated the expressions of PPARα. In conclusion, URB597 exerts a neuroprotective effect in a dose- and time-dependent manner, and this effect may be related to its restoration of autophagic flux and inhibition of neuronal necroptosis. PPARα is involved in the neuroprotective effect of URB597. This study provides novel evidence that URB597 may be a promising agent for the clinical treatment of ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Ratos , Camundongos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , PPAR alfa/metabolismo , Necroptose , Ratos Sprague-Dawley , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Autofagia , Cloroquina/farmacologia , Cloroquina/uso terapêutico
4.
Brain Behav Immun ; 113: 275-288, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482204

RESUMO

Over the past decade, compelling genetic evidence has highlighted the crucial role of microglial dysregulation in the development of Alzheimer's disease (AD). As resident immune cells in the brain, microglia undergo dystrophy and senescence during the chronic progression of AD. To explore the potential therapeutic benefits of replenishing the brain with new microglia in AD, we utilized the CSF1R inhibitor PLX3397 to deplete existing microglia and induce repopulation after inhibitor withdrawal in 5xFAD transgenic mice. Our findings revealed the remarkable benefits of microglial repopulation in ameliorating AD-associated cognitive deficits, accompanied by a notable elevation in synaptic proteins and an enhancement of hippocampal long-term potentiation (LTP). Additionally, we observed the profound restoration of microglial morphology and synaptic engulfment following their self-renewal. The impact of microglial repopulation on amyloid pathology is dependent on the duration of repopulation. Transcriptome analysis revealed a high resemblance between the gene expression profiles of repopulated microglia from 5xFAD mice and those of microglia from WT mice. Importantly, the dysregulated neurotrophic signaling pathway and hippocampal neurogenesis in the AD brain are restored following microglial replenishment. Lastly, we demonstrated that the repopulation restores the expression of brain-derived neurotrophic factor (BDNF) in microglia, thereby contributing to synaptic plasticity. In conclusion, our findings provide compelling evidence to support the notion that microglial self-renewal confers substantial benefits to the AD brain by restoring the BDNF neurotrophic signaling pathway. Thus, targeted microglial repopulation emerges as a highly promising and novel therapeutic strategy for alleviating cognitive impairment in AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Microglia/metabolismo , Camundongos Transgênicos , Transdução de Sinais , Cognição , Modelos Animais de Doenças
5.
Immunity ; 56(8): 1794-1808.e8, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442133

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is strongly linked to Alzheimer's disease (AD) risk, but its functions are not fully understood. Here, we found that TREM2 specifically attenuated the activation of classical complement cascade via high-affinity binding to its initiator C1q. In the human AD brains, the formation of TREM2-C1q complexes was detected, and the increased density of the complexes was associated with lower deposition of C3 but higher amounts of synaptic proteins. In mice expressing mutant human tau, Trem2 haploinsufficiency increased complement-mediated microglial engulfment of synapses and accelerated synaptic loss. Administration of a 41-amino-acid TREM2 peptide, which we identified to be responsible for TREM2 binding to C1q, rescued synaptic impairments in AD mouse models. We thus demonstrate a critical role for microglial TREM2 in restricting complement-mediated synaptic elimination during neurodegeneration, providing mechanistic insights into the protective roles of TREM2 against AD pathogenesis.


Assuntos
Doença de Alzheimer , Complemento C1q , Camundongos , Animais , Humanos , Complemento C1q/genética , Complemento C1q/metabolismo , Encéfalo/metabolismo , Sinapses/metabolismo , Ativação do Complemento , Microglia/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
6.
Head Neck ; 45(9): 2344-2354, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37415457

RESUMO

BACKGROUND: To explore the patterns and risk factors of early thyroid dysfunction in nasopharyngeal carcinoma (NPC) patients within 1 year after intensity-modulated radiation therapy (IMRT). METHODS: Patients with NPC who received definitive IMRT between April 2016 and April 2020 were included. All patients had normal thyroid function before definitive IMRT. The chi-square test, Student's T-test, Mann-Whitney U test, Kaplan-Meier method, receiver operating characteristics curve, and Cox proportional hazard analysis were used for statistical analysis. RESULTS: A total of 132 NPC patients were identified. Of these patients, 56 (42.4%) had hypothyroidism and 17 (12.9%) had hyperthyroidism. The median time to hypothyroidism and hyperthyroidism was 9 months (range, 1-12 months) and 1 month (range, 1-6 months) after definitive IMRT, respectively. In patients with hypothyroidism, 41 (73.2%) had subclinical hypothyroidism and 15 (26.8%) had clinical hypothyroidism. In those with hyperthyroidism, 12 patients (70.6%) had subclinical hyperthyroidism, and five patients (29.4%) had clinical hyperthyroidism. Age, clinical stage, thyroid volume, and V45 were independent risk factors for early radiation-induced hypothyroidism within 1 year after IMRT. Patients aged <47 years, stage III/IV disease, or pre-irradiation thyroid volume < 14 cm3 had higher risks of developing hypothyroidism. CONCLUSION: Primary subclinical hypothyroidism was the most common subtype of early thyroid dysfunction in NPC patients within 1 year after IMRT. Age, clinical stage, thyroid volume, and V45 were independent risk factors for early radiation-induced hypothyroidism in NPC patients.


Assuntos
Hipertireoidismo , Hipotireoidismo , Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/complicações , Neoplasias Nasofaríngeas/patologia , Hipotireoidismo/epidemiologia , Hipotireoidismo/etiologia , Fatores de Risco , Radioterapia de Intensidade Modulada/efeitos adversos , Hipertireoidismo/epidemiologia , Hipertireoidismo/complicações , Dosagem Radioterapêutica
7.
Cell Signal ; 109: 110787, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391048

RESUMO

BACKGROUND: Despite aggressive local and regional therapy, triple-negative breast cancer (TNBC) is characterized by an increased risk of locoregional recurrence. RNA-sequencing data has identified a large number of circRNAs in primary breast cancers, but the role of specific circRNAs in regulating the radiosensitivity of TNBC is not fully understood. This research aimed to investigate the function of circNCOR1 in the radiosensitivity of TNBC. METHODS: CircRNA high-throughput sequencing was conducted on two breast cancer MDA-MB-231 and BT549 cell lines after 6 Gy radiation. The relationship between circNCOR1, hsa-miR-638, and CDK2 was determined by RNA immunoprecipitation (RIP), FISH and luciferase assays. The proliferation and apoptosis of breast cancer cells were measured by CCK8, flow cytometry, colony formation assays, and western blot. RESULTS: Differential expression of circRNAs was closely related to the proliferation of breast cancer cells after irradiation. Overexpression of circNCOR1 facilitated the proliferation of MDA-MB-231 and BT549 cells and impaired the radiosensitivity of breast cancer cells. Additionally, circNCOR1 acted as a sponge for hsa-miR-638 to regulate the downstream target protein CDK2. Overexpression of hsa-miR-638 promoted apoptosis of breast cancer cells, while overexpression of CDK2 alleviated apoptosis and increased proliferation and clonogenicity. In vivo, overexpression of circNCOR1 partially reversed radiation-induced loosening of tumor structures and enhanced tumor cell proliferation. CONCLUSION: Our results demonstrated that circNCOR1 bounds to hsa-miR-638 and targets CDK2, thereby regulating the radiosensitivity of TNBC.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , RNA Circular/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Movimento Celular/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo
8.
Pharmacology ; 107(5-6): 281-289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35325888

RESUMO

AIM: Recent evidence indicates that neuroinflammation and oxidative stress play vital roles in the pathological process of major depressive disorder (MDD). Cinnamic acid (CA), a naturally occurring organic acid, has been reported to ameliorate neuroinflammation and oxidative stress for treatment of diabetes-related memory deficits. Here, we explored whether CA pretreatment ameliorated lipopolysaccharide (LPS)-induced depressive-like behaviors in mice by suppressing neuroinflammation and by improving oxidative stress status. METHODS: The mice were treated with CA, vehicle, or fluoxetine as a positive control. After 14 days, LPS (1 mg/kg, i.p.) or saline was administered. The depression-like behaviors were examined by the sucrose preference test (SPT), the forced swimming test (FST), and the tail suspension test (TST). Furthermore, the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and brain-derived neurotrophic factor (BDNF) in the hippocampus and cortex of mice were assayed. RESULTS: Our results demonstrated that CA pretreatment at the doses of 100 and 200 mg/kg significantly attenuated depressive-like behaviors in the TST, FST, and SPT. In addition, not only the upregulation of pro-inflammatory cytokines (IL-6 and TNF-α) but also oxidative stress parameters including SOD, GSH, and MDA in the hippocampus and cortex of mice treated with LPS were dramatically improved by CA pretreatment. Finally, CA pretreatment strikingly ameliorated the downregulation of BDNF induced by LPS in the hippocampus and cortex of mice. CONCLUSION: Our results indicated that CA may have therapeutic potential for MDD treatment through attenuating the LPS-induced inflammation and oxidative stress along with significant improvement of BDNF impairment.


Assuntos
Transtorno Depressivo Maior , Lipopolissacarídeos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cinamatos , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Glutationa/metabolismo , Hipocampo/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Doenças Neuroinflamatórias , Estresse Oxidativo , Superóxido Dismutase , Fator de Necrose Tumoral alfa/metabolismo
9.
Phytomedicine ; 94: 153843, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785414

RESUMO

BACKGROUND: Obesity is the cause of multiple metabolic disorders, and its incidence has been rapidly increasing worldwide. It develops when energy intake exceeds energy expenditure (EE). Wedelolactone (WDL) is a naturally isolated compound from Eclipta prostrata L. and possesses many pharmacological activities. However, little is known about the effect of WDL on obesity and EE. PURPOSE: The present study aimed to investigate the effect of WDL on obesity and EE in diet-induced obese (DIO) mice and its underlying mechanism. METHODS: Obese mice were induced by high fat diet. The effects of WDL on obese mice were assessed by examining body weight, fat mass, EE, glucose tolerance, and hepatic and kidney injury. 3T3-L1 cells were differentiated into mature adipocytes and incubated with WDL in vitro. Immunohistochemistry, western blotting, and real-time PCR were used to assess adipose browning. The inhibitory efficiency of WDL on nicotinamide N-methyltransferase (NNMT) was evaluated using a fluorescence assay. RESULTS: WDL reduced fat mass, suppressed body weight gain, and improved obesity-related metabolic disorders in DIO mice. WDL treatment promoted adipose browning and enhanced EE in both DIO mice and 3T3-L1 cells. These effects were eliminated in AMPK antagonized or PPARα knockdown cells and in PPARα-/- mice. Furthermore, we identified the target of WDL to be NNMT, an appealing target for regulating energy metabolism. WDL inhibited NNMT with an extremely low IC50 of 0.03 µM. Inhibition of NNMT and activation of SIRT1/AMPK/PPARα explains how WDL reverses obesity by prompting adipose browning. CONCLUSION: Our findings demonstrate the novel effects of WDL in promoting adipose browning, enhancing EE and attenuating obesity and uncover the underlying mechanism, which includes inhibition of NNMT and subsequently activation of SIRT1/AMPK/PPARα in response to WDL. WDL could be further developed as a therapeutic agent for treating obesity and related metabolic diseases.


Assuntos
Nicotinamida N-Metiltransferase , Sirtuína 1 , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP , Animais , Cumarínicos , Dieta Hiperlipídica , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , PPAR alfa , Compostos Fitoquímicos
10.
J Neuroinflammation ; 18(1): 286, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893068

RESUMO

BACKGROUND: TREM2 is a microglial receptor genetically linked to the risk for Alzheimer's disease (AD). The cerebrospinal fluid (CSF) levels of soluble TREM2 (sTREM2) have emerged as a valuable biomarker for the disease progression in AD and higher CSF levels of sTREM2 are linked to slower cognitive decline. Increasing sTREM2 in mouse models of amyloidosis reduces amyloid-related pathology through modulating microglial functions, suggesting a beneficial role of sTREM2 in microglia biology and AD pathology. METHODS: In the current study, we performed serial C- and N-terminal truncations of sTREM2 protein to define the minimal sequence requirement for sTREM2 function. We initially assessed the impacts of sTREM2 mutants on microglial functions by measuring cell viability and inflammatory responses. The binding of the sTREM2 mutants to oligomeric Aß was determined by solid-phase protein binding assay and dot blot assay. We further evaluated the impacts of sTREM2 mutants on amyloid-related pathology by direct stereotaxic injection of sTREM2 proteins into the brain of 5xFAD mice. RESULTS: We found that both sTREM2 fragments 41-81 and 51-81 enhance cell viability and inflammatory responses in primary microglia. However, the fragment 51-81 exhibited impaired affinity to oligomeric Aß. When administrated to the 5xFAD mice brain, the sTREM2 fragment 41-81, but not 51-81, increased the number of plaque-associated microglia and reduced the plaque deposition. Interestingly, the fragment 41-81 was more efficient than the physiological form of sTREM2 in ameliorating Aß-related pathology. CONCLUSIONS: Our results indicate that the interaction of sTREM2 truncated variants with Aß is essential for enhancing microglial recruitment to the vicinity of an amyloid plaque and reducing the plaque load. Importantly, we identified a 41-amino acid sequence of sTREM2 that is sufficient for modulating microglial functions and more potent than the full-length sTREM2 in reducing the plaque load and the plaque-associated neurotoxicity. Taken together, our data provide more insights into the mechanisms underlying sTREM2 function and the minimal active sTREM2 sequence represents a promising candidate for AD therapy.


Assuntos
Amiloidose/genética , Amiloidose/patologia , Encéfalo/patologia , Glicoproteínas de Membrana/genética , Microglia/patologia , Fenótipo , Receptores Imunológicos/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos
11.
Front Oncol ; 11: 668066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136400

RESUMO

PURPOSE: To investigate the influence of human papillomavirus (HPV) status on survival outcomes and treatment decisions for patients with de novo stage IV head and neck squamous cell cancers (HNSCC). METHODS: Patients initially diagnosed with de novo stage IVC HNSCC between 2010 and 2015 were identified from the Surveillance, Epidemiology, and End Results database. Cox multivariable analyses were performed to determine prognostic factors associated with head and neck cancers specific survival (HNCSS) and overall survival (OS). RESULTS: We identified 303 patients who received chemotherapy in this study, including 52.5% of them had HPV-positive disease. HPV-positive HNSCC had better HNCSS (P < 0.001) and OS (P < 0.001) compared to those with HPV-negative disease. The results of Cox multivariable analyses showed that HPV-negative status (P = 0.007), N3 stage (P = 0.004), bone metastases (P < 0.001), and lung metastases (P = 0.003) were associated with worse HNCSS. Similar results were found regarding the OS. The sensitivity analyses indicated that HPV-positive HNSCC patients who were treated with radiotherapy had better survival outcomes. However, no survival benefits were found in those with HPV-positive disease receiving surgery. For HPV-negative patients, no survival benefit was observed among those treated with radiotherapy or surgery. CONCLUSIONS: Approximately half of the stage IVC HNSCC patients are HPV-related. The presence of HPV infection appears to be strongly associated with the survival outcome in patients with de novo stage IV HNSCC. Determination of HPV status may help guide clinicians in prognostic assessment and treatment decision-making in this population.

12.
Inflammation ; 44(3): 1145-1159, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33398542

RESUMO

Inflammation theory has suggested that the pathogenesis of postoperative ileus (POI) involves the steroid receptor coactivator-3 (SRC-3). Therefore, we investigated the role of SRC-3 in the muscles of the small intestine using a mouse POI model. Here, we reported that intestinal manipulation (IM) significantly reduced the extent of phenol red migration in the entire gastrointestinal tract, and the calculated geometric center (GC) value in wild-type (WT) mice at 24 h after surgery was higher than that in the knockout (KO) mice and in the sham-operated control group. The expression of SRC-3 was upregulated in the mouse intestinal muscularis at 24 h after surgical manipulation, and the mRNA and protein levels of inflammatory cytokines were upregulated compared with those in the control group. At 24 h after IM, the number of neutrophils in the experimental group was significantly higher than that in the control group; in the IM group, the number of neutrophils in the SRC-3-/- mice was markedly higher than that in the WT mice. At 24 h after IM, the myeloperoxidase (MPO) activity in the experimental group was significantly higher than that in the control group. In the IM group, the MPO activity of the SRC-3-/- mice was markedly higher than that of the WT mice. In summary, proinflammatory cytokines, the number of neutrophils, and the MPO activity were significantly increased in the muscularis of the jejunum and ileum of KO mice after IM compared with those of the WT mice, indicating that SRC-3 might play a protective role in POI.


Assuntos
Citocinas/metabolismo , Motilidade Gastrointestinal , Íleus/metabolismo , Mediadores da Inflamação/metabolismo , Intestino Delgado/metabolismo , Músculo Liso/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Complicações Pós-Operatórias/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Íleus/etiologia , Íleus/imunologia , Íleus/fisiopatologia , Intestino Delgado/imunologia , Intestino Delgado/fisiopatologia , Jejuno/imunologia , Jejuno/metabolismo , Jejuno/fisiopatologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso/imunologia , Músculo Liso/fisiopatologia , Infiltração de Neutrófilos , Coativador 3 de Receptor Nuclear/genética , Peroxidase/metabolismo , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/imunologia , Complicações Pós-Operatórias/fisiopatologia , Técnicas de Cultura de Tecidos
13.
Med Oncol ; 37(8): 73, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32725378

RESUMO

Pituitary tumor-transforming gene 1 (PTTG1) has been identified as an oncogene and is overexpressed in many tumor types. However, the role of PTTG1 in glioblastoma (GBM) has not been well characterized, especially in relation to angiogenesis, migration, and invasion. In the present study, our results showed that the expression of PTTG1 was significantly higher in patients with GBM. Bioinformatic analysis showed that angiogenesis and the cell migration-related process were increased in patients with high PTTG1 expression levels; meanwhile, PTTG1 was positively correlated with marker genes of angiogenesis, migration and the evasion of apoptosis. In vitro assays showed that PTTG1 knockdown dramatically suppressed angiogenesis, migration and invasion, and increased the apoptosis of GBM cells. Moreover, our results also showed that silencing PTTG1 suppressed the activity of the TGF-ß/PI3K-AKT-mTOR pathway, which induced tumor deterioration in multiple organs. Overall, our findings indicate that PTTG1 is a glioma malignant factor that promotes angiogenesis, migration, invasion, and the evasion of apoptosis, and these roles may be related to the TGF-ß/PI3K-AKT-mTOR pathway. Thus, the targeted inhibition of PTTG1 might be a novel therapeutic strategy and a potential diagnostic biomarker for GBM-targeted therapies.


Assuntos
Glioma/irrigação sanguínea , Securina/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Glioma/metabolismo , Glioma/patologia , Humanos , Invasividade Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Securina/genética , Securina/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
14.
J Pharmacol Exp Ther ; 373(1): 81-91, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32024803

RESUMO

Oleoylethanolamide (OEA) is an endogenous peroxisome proliferator-activated receptor α (PPARα) agonist that acts on the peripheral control of energy metabolism. However, its therapeutic potential and related mechanisms in hepatic glucose metabolism under type 2 diabetes mellitus (T2DM) are not clear. Here, OEA treatment markedly improved glucose homeostasis in a PPARα-independent manner. OEA efficiently promoted glycogen synthesis and suppressed gluconeogenesis in mouse primary hepatocytes and liver tissue. OEA enhanced hepatic glycogen synthesis and inhibited gluconeogenesis via liver kinase B1 (LKB1)/5' AMP-activated protein kinase (AMPK) signaling pathways. PPARα was not involved in the roles of OEA in the LKB1/AMPK pathways. We found that OEA exerts its antidiabetic effect by increasing glycogenesis and decreasing gluconeogenesis via the LKB1/AMPK pathway. The ability of OEA to control hepatic LKB1/AMPK pathways may serve as a novel therapeutic approach for the treatment of T2DM. SIGNIFICANCE STATEMENT: Oleoylethanolamide (OEA) exerted a potent antihyperglycemic effect in a peroxisome proliferator-activated receptor α-independent manner. OEA played an antihyperglycemic role primarily via regulation of hepatic glycogen synthesis and gluconeogenesis. The main molecular mechanism of OEA in regulating liver glycometabolism is activating the liver kinase B1/5' AMP-activated protein kinase signaling pathways.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Endocanabinoides/farmacologia , Gluconeogênese/fisiologia , Glicogênio/biossíntese , Fígado/metabolismo , Ácidos Oleicos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Endocanabinoides/uso terapêutico , Gluconeogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Ácidos Oleicos/uso terapêutico , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
15.
Biochem Biophys Res Commun ; 524(2): 308-316, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-31987499

RESUMO

BACKGROUND: Atherosclerotic plaque rupture is the major trigger of acute cardiovascular risk events, and manipulation of M1/M2 macrophage homeostasis is an effective strategy for regulating atherosclerotic plaque stability. This study was aimed to illuminate the effects of oleoylethanolamide (OEA) on macrophage polarization and plaque stability. METHODS: Macrophages derived from THP-1 were treated with OEA followed by LPS/IFN-γ, and the markers of M1, M2 macrophages were monitored by western blot, real-time PCR and immunofluorescence staining. The effect of OEA on macrophage polarization in the arch of aortic arteries was tested by immunofluorescence staining and western blot, and the plaque stability was completed by Masson's trichrome and hematoxylin and eosin (HE) in apolipoprotein E (ApoE)-/- mice. RESULTS: OEA treatment enhanced the expression of two classic M2 macrophage markers, macrophage mannose receptor (CD206) and transforming growth factor (TGF-ß), while the expression of iNOS (M1 macrophages) was decreased in THP-1-derived macrophages. Blocking of PPARα using siRNA and inhibition of AMP-activated protein kinase (AMPK) by its inhibitor compound C attenuated the OEA-induced expression of M2 macrophage markers. In addition, OEA significantly suppressed M1, promoted M2 macrophage polarization, increased collagen content and decreased necrotic core size in atherosclerotic plaques in ApoE-/- mice, which were linked with the expression of PPARα. CONCLUSIONS: OEA improved atherosclerotic plaque stability through regulating macrophage polarization via AMPK-PPARα pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Anti-Inflamatórios/uso terapêutico , Endocanabinoides/uso terapêutico , Macrófagos/efeitos dos fármacos , Ácidos Oleicos/uso terapêutico , PPAR alfa/imunologia , Placa Aterosclerótica/tratamento farmacológico , Animais , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/patologia , Transdução de Sinais/efeitos dos fármacos , Células THP-1
16.
Neurochem Int ; 129: 104501, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299417

RESUMO

Brain is a site of diabetic end-organ damage. Diabetes-associated cognitive dysfunction, referred as "diabetic encephalopathy" (DE) has been coined for the patients with type 2 diabetes mellitus showing decline in their cognitive function, especially weak episodic memory, cognitive inflexibility and poor psychomotor performance leading towards Alzheimer's disease. Current evidence supported that aberrant synapses, energy metabolism imbalance, advanced glycation end products (AGEs) accumulation and Tau hyperphosphorylation are associated with cognition deficits induced by diabetes. Oleoylethanolamide (OEA), an endogenous peroxisome proliferator-activated receptor alpha (PPARα) agonist, has anti-hyperlipidemia, anti-inflammatory and neuroprotective activities. However, the effect of OEA on DE is unknown. Therefore, we tested its influence against cognitive dysfunction in high fat diet and streptozotocin (HFD + STZ)-induced diabetic C57BL/6J and PPARα--/- mice using Morris water maze (MWM) test. Neuron staining, dementia markers and neuroplasticity in the hippocampus were assessed to evaluate the neuropathological changes. The results showed that chronic OEA treatment significantly lowered hyperglycemia, recovered cognitive performance, reduced dementia markers, and inhibited hippocampal neuron loss and neuroplasticity impairments in diabetic mice. In contrast, the changes in MWM performance and neuron loss were not observed in PPARα knockout mice via OEA administration. These results indicated that OEA may provide a potential alternative therapeutic for DE by activating PPARα signaling.


Assuntos
Encefalopatias/prevenção & controle , Transtornos Cognitivos/prevenção & controle , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Endocanabinoides/uso terapêutico , Ácidos Oleicos/uso terapêutico , PPAR alfa/agonistas , Animais , Glicemia/análise , Encefalopatias/tratamento farmacológico , Encefalopatias/etiologia , Encefalopatias/patologia , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/psicologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/psicologia , Dieta Hiperlipídica/efeitos adversos , Produtos Finais de Glicação Avançada/sangue , Hipocampo/patologia , Resistência à Insulina , Lipídeos/sangue , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Transtornos da Memória/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , PPAR alfa/deficiência , PPAR alfa/genética , PPAR alfa/fisiologia , Organismos Livres de Patógenos Específicos , Estreptozocina , Proteínas tau/metabolismo
17.
Nat Commun ; 10(1): 2923, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266955

RESUMO

The original version of this Article omitted the following from the end of the Acknowledgements: 'X.C. also received funding from the Shenzhen Basic Research Program JCYJ20170818140904167.' This has now been corrected in both the PDF and HTML versions of the Article.

18.
Exp Gerontol ; 122: 99-108, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039389

RESUMO

The extract of Moringa oleifera (M. oleifera) seeds exerts various pharmacological effects. Our previous study demonstrated that M. oleifera seed extract (MSE) alleviates scopolamine-induced learning and memory impairment in mice. In the present study, we investigate the neuropharmacological properties of 70% ethanolic MSE in the acute and delayed stages of ischemic stroke. MSE may be effective for the prevention and/or treatment of acute ischemic stroke. The most effective dose was 500 mg/kg, and the therapeutic window seemed to be within 4 h after reperfusion. Additionally, we found that MSE treatment improved animal survival, reversed spatial cognitive impairment and promoted hippocampal neurogenesis and neuroplasticity as well as the cholinergic neurotransmission system during the recovery stages of ischemic stroke. Our findings verified that MSE has neuroprotective effects in both the acute and chronic stages of ischemic stroke. The relevant mechanism of protection may occur by promoting hippocampal neurogenesis and synaptic plasticity as well as improving cholinergic function. These findings suggest that M. oleifera seed extract may be a promising neuroprotective agent for the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Moringa oleifera/química , Extratos Vegetais/farmacologia , Sementes/química , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
19.
J Cell Physiol ; 234(10): 18392-18407, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30895621

RESUMO

Oleoylethanolamide (OEA) is an endogenous lipid mediator involved in the control of feeding, body weight, and energy metabolism. However, whether OEA modulates maturation of dendritic cells (DCs) has never been addressed. Hence, we evaluated the effect of OEA on DCs maturation in bone marrow-derived DCs (BMDCs) in four aspects: (a) Cell surface markers were determined using flow cytometric analysis; (b) cell mobile ability was testified with the transwell assay; (c) stimulation of T cells proliferation was performed in a coculture system; and (d) cytokine production was measured using polymerase chain reaction (PCR). The result showed that, in mature BMDCs induced by lipopolysaccharides (LPS), the OEA treatment decreased expressions of cell surface markers, reduced cell migration, diminished the proliferation of cocultured T cells, and regulated cytokine production of BMDCs, indicating the modulatory effect of OEA on DCs maturation. Furthermore, to explore the underlying mechanism of the immunomodulatory effect of OEA, we used antagonists of transient receptor potential vanilloid-1 (TRPV1) and AMP-activated protein kinase (AMPK), determined the protein expressions of TRPV1/AMPK and Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) using western blot, and measured the intracellular calcium concentration using calcium imaging. The result illustrated that OEA downregulated TLR4/NF-κB, the classical pathway leading to DCs maturation induced by LPS, through the activation of TRPV1 and AMPK. Collectively, the present study suggests that OEA suppresses DCs maturation through the activation of TRPV1/AMPK. These findings increase our understanding of this endogenous lipid OEA.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Dendríticas/efeitos dos fármacos , Endocanabinoides/farmacologia , Fatores Imunológicos/farmacologia , Ácidos Oleicos/farmacologia , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Células Dendríticas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
20.
Nat Commun ; 10(1): 1365, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911003

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial surface receptor genetically linked to the risk for Alzheimer's disease (AD). A proteolytic product, soluble TREM2 (sTREM2), is abundant in the cerebrospinal fluid and its levels positively correlate with neuronal injury markers. To gain insights into the pathological roles of sTREM2, we studied sTREM2 in the brain of 5xFAD mice, a model of AD, by direct stereotaxic injection of recombinant sTREM2 protein or by adeno-associated virus (AAV)-mediated expression. We found that sTREM2 reduces amyloid plaque load and rescues functional deficits of spatial memory and long-term potentiation. Importantly, sTREM2 enhances microglial proliferation, migration, clustering in the vicinity of amyloid plaques and the uptake and degradation of Aß. Depletion of microglia abolishes the neuroprotective effects of sTREM2. Our study demonstrates a protective role of sTREM2 against amyloid pathology and related toxicity and suggests that increasing sTREM2 can be explored for AD therapy.


Assuntos
Doença de Alzheimer/terapia , Potenciação de Longa Duração/efeitos dos fármacos , Glicoproteínas de Membrana/genética , Microglia/efeitos dos fármacos , Placa Amiloide/terapia , Receptores Imunológicos/genética , Memória Espacial/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Injeções Intraventriculares , Potenciação de Longa Duração/fisiologia , Masculino , Glicoproteínas de Membrana/administração & dosagem , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fenótipo , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Cultura Primária de Células , Proteólise , Receptores Imunológicos/administração & dosagem , Receptores Imunológicos/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Memória Espacial/fisiologia , Técnicas Estereotáxicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...