Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120586, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513581

RESUMO

Simultaneous capture of formaldehyde (HCHO) and carbon dioxide (CO2) in indoor air is promising of achieving indoor-air purification. Of all potential adsorbents, hexagonal boron nitride (h-BN) is one of the most suitable species owing to facile formation of attraction points. Therefore, in this study, performances of HCHO and CO2 being adsorbed over pure/modified h-BN are systematically investigated via density functional theory (DFT) calculations. Minutely speaking, direct interaction between HCHO and CO2, single-point adsorption enhancement of HCHO over modified h-BN, co-adsorption reinforcement of HCHO/CO2 as well as relevant thermodynamic characteristics are major research contents. According to calculation results, there is relatively strong attraction between HCHO and CO2 owing to hydrogen bonds, which is in favor of co-adsorption of HCHO/CO2. As to single-adsorption of HCHO, C-doped h-BN shows better adsorption features than P-doped h-BN and C/P-doped h-BN is slightly weakened in adsorption ability due to surficial deformation caused by P atoms. For co-adsorption of HCHO/CO2, CO2 is the protagonist via formation of quasi-carbonate with the help of delocalized π-orbital electrons. Regarding effects of temperatures on adsorption strengths, they depend on interelectronic interactions among dopant atoms and finally derives from dispersion of π bonds across adsorbents. Overall, this study provides detailed mechanisms for co-capture of HCHO/CO2 to accomplish indoor-air purification.


Assuntos
Dióxido de Carbono , Formaldeído , Adsorção , Formaldeído/química , Compostos de Boro
2.
Environ Sci Pollut Res Int ; 30(51): 110431-110460, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37789221

RESUMO

With the intention of separating benzene (C6H6) from indoor polluted air and collecting it in a cleaner way, it is promising of getting C6H6 adsorbed on activated carbon materials with outstanding physicochemical properties. In this study, how C6H6 is adsorbed over single-wall carbon materials and relevant adsorption processes are enhanced is thoroughly investigated via density functional theory (DFT). Especially, distinction between partial and whole effects of adsorbents on C6H6 adsorption, features of electron distribution across section of adsorption forms, and regulation mechanism of nonsteady-state adsorption for C6H6 are key points. According to calculation results, C6H6 molecules could be captured by pure single-wall carbon nanotube (CNT) through repulsive forces (quantified as 103.42 kJ/mol) from all quarters, which makes it stay in nonsteady-state adsorption forms and easily run into free state. Therefore, when external temperature increases from 0 to 300 K, molecular movement will be intense enough to help C6H6 break into another random positions instead of statistically remaining immobile. As for this problem, single-wall CNTs are modified through making defects and replacing some C atoms with N atoms, respectively. In this way, surficial electron distribution of modified adsorbents is regulated to tremendously cut down repulsive forces (quantified as 50.30 kJ/mol) and reverse nonsteady-state adsorption into near-equilibrium quasi-steady-state adsorption (single-side attraction near 100 kJ/mol). Therefore, this research would provide useful information for exploiting single-wall carbon materials as effective adsorbents of C6H6 in order to quickly achieve indoor air purification.


Assuntos
Poluição do Ar , Nanotubos de Carbono , Benzeno/química , Adsorção , Temperatura , Nanotubos de Carbono/química
3.
Environ Sci Technol ; 56(6): 3544-3551, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35238541

RESUMO

Flue gas desulfurization (FGD) scrubbers capture selenium in coal-fired power plants, leading to a high concentration of selenium in the slurry. This research proves that SO32- is preferentially oxidized compared to SeO32- by S2O82-. With the increase in the oxidation-reduction potential (ORP) caused by S2O82- addition, the conversion rate of SO32- increased and the size of gypsum grains grew from 31.2 to 34.6 µm. SeO32- migrates into gypsum grains during the growth of CaSO4·2H2O, leading to selenium fixation in gypsum. In a field study of a 350 MW unit, the ORP increased from 142 to 450 mV when Na2S2O8 was fed into the FGD slurry. With the addition of the oxidant, 65.1% of selenium in the liquid phase migrated into gypsum. The concentration of selenium in the leachate of gypsum after oxidant addition decreased by 68.0%. A 2.34% increase in the selenium removal rate was observed in the scrubber. This study focuses on the migration and conversion of selenium in an actual FGD slurry via a field test. The results found in the 350 MW unit are consistent with laboratory results. The change in ORP has been proven to be effective in adjusting the selenium distribution in the FGD slurry.


Assuntos
Selênio , Sulfato de Cálcio , Carvão Mineral , Oxidantes , Centrais Elétricas
4.
ACS Appl Mater Interfaces ; 14(1): 1056-1069, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34974700

RESUMO

The energy barrier of CO2 chemically adsorbed on hexagonal boron nitride (h-BN) is relatively big. In order to cut down the energy barriers and facilitate fast adsorption of CO2, it is necessary to apply catalysts as a promoter. In this study, single-atom iron is introduced as the catalyst to reduce the energy barriers of CO2 adsorbed on pure/doped h-BN. Through density functional theory calculations, catalytic reaction mechanisms, stability of single-atom iron fixed on adsorbents, CO2 adsorption characteristics, and features of thermodynamics/reaction dynamics during adsorption processes are fully investigated to explain the catalytic effects of single-atom iron on CO2 chemisorption. According to calculations, when CO2 and OH- get into activated states (i.e., CO2•- and •OH) with the help of single-atom iron, their chemical activities will be promoted to a large degree, which makes the transition state (TS) energy barrier of HCO3- to decrease by 92.54%. In the meantime, it is proved that single-atom iron could be stably fixed on doped h-BN with the binding energy larger than 2 eV to achieve sustainable catalysis. With the presence of single-atom iron, TS energy barriers of CO2 adsorbed on h-BN with the presence of H2O decreased by 94.39, 78.87, and 30.63% over pure h-BN, 3C-doped h-BN, and 3N-doped h-BN, respectively. In the meantime, thermodynamic analyses indicate that TS energy barriers are mainly determined by element doping and temperatures are a little beneficial to the reduction of TS energy barriers. With the above aspects combined, the results of this study could supply crucial information for massively and quickly capturing CO2 in real industries.

5.
Chemosphere ; 292: 133396, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34968508

RESUMO

Reducing energy barriers of CO2 being chemisorbed on hexagonal boron nitride (h-BN) is a kernel step to efficiently and massively capture CO2. In this study, aluminum/carbon (Al/C) atoms are used as dopants to alter surface potential fields of h-BN, which aims at lowering energy barriers of adsorption processes. Through theoretical calculations, direct-adsorption structures/properties of CO2, joint-adsorption structures/properties of CO2/H2O, transition state (TS) energy barriers, effects of temperatures on adsorption energies/TS energy barriers and changes of reaction rate constants over different adsorbents are investigated in detail in order to reveal how doping of Al/C atoms promotes CO2 adsorption strength over doped h-BN. According to DFT calculation results, the average adsorption energy of CO2 being directly adsorbed on Al/C-doped h-BN arrives at -59.43 kJ/mol, which is about 5 times as big as that over pure h-BN. As to the average adsorption energy of CO2/H2O and relevant TS energy barrier, they are modified to -118.89 kJ/mol and 40.23 kJ/mol over Al/C-doped h-BN in contrast with -33.91 kJ/mol and 1695.11 kJ/mol over pure h-BN, respectively. What is more, based on thermodynamic analyses and reaction dynamics, the average desorption temperatures of CO2(/H2O) are promoted over doped h-BN and the temperature power exponent is negatively correlated with the activation energy in the Arrhenius equation form. The complete understanding of this study would supply crucial information for applying Al/C-doped h-BN to effectively capturing CO2 in real industries.


Assuntos
Alumínio , Dióxido de Carbono , Adsorção , Compostos de Boro , Carbono
6.
J Hazard Mater ; 424(Pt B): 127426, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34673395

RESUMO

Selenium (Se) is one of the hazardous trace elements emitted from coal-fired power plants. The Se migration behavior in wet flue gas desulfurization (FGD) slurry is still unclear, and the species of Se in FGD gypsum remains controversial. In this research, the bubbling experiments using simulated slurry with/without gypsum crystallization process were conducted. The experimental results indicated that pure gypsum has poor capability to capture Se components, and only selenite could be trapped in gypsum during its crystal growth stage. Furthermore, the DFT calculation was conducted to provide the microscopic information of Se adsorption and substitution characteristics during gypsum crystallization process. The research findings of this study could help understand the mechanism of Se migration process in FGD slurry, and facilitate the development of effective Se emission control technologies in the future.


Assuntos
Selênio , Oligoelementos , Adsorção , Sulfato de Cálcio , Carvão Mineral , Centrais Elétricas
7.
Chemosphere ; 288(Pt 3): 132653, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34715099

RESUMO

Some flue gas constituents have negative effects on As2O3 adsorption of γ-Al2O3 so promoting arsenic adsorption performances under complicated flue gas conditions is necessary based on previous studies. In this study, γ-Al2O3 is modified with manganous nitrate and then Mn-modified γ-Al2O3 is used as the adsorbents in experiments. Besides, molecular dynamics (MD) simulations and density functional theory (DFT) calculations are performed to explore mechanisms of how loadings of Mn enhance arsenic adsorption features of γ-Al2O3 when being affected by flue gas constituents in microscale and mesoscale, respectively. As for DFT calculations, it is uncovered that electron transfer/interaction among As2O3, flue gas constituents and Mn-modified γ-Al2O3 mostly influences arsenic adsorption. For MD simulations, it is expounded that the collision and aggregation of As2O3 and flue gas constituent molecules have most impact on arsenic adsorption. As far as experiments are concerned, they are conducted to show the macroscopic characterizations of arsenic adsorption performances, corresponding to results of DFT calculations and MD simulations. The understanding of these three different aspects could supply significant references for utilization of Mn-modified γ-Al2O3 in real industries to remove arsenic under complex flue gas conditions.


Assuntos
Arsênio , Adsorção
8.
J Hazard Mater ; 416: 125823, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492785

RESUMO

Selenium is one of the hazardous trace elements emitted from coal-fired power plants. The distribution of selenium in Wet Flue Gas Desulfurization (WFGD) process is still unclear and even in controversial, impeding the development of selenium removal technologies. This research has found that the selenite in simulated slurry could be reduced by SO2 while selenate has not been affected. Characterization methods including X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to provide an evidence that the product of the reduction reaction is amorphous elemental selenium. Meanwhile, the influences of other gaseous components, pH, temperature and S2O82- in simulated slurry has also been considered in this research. It is found that with the increase of SO2 concentration in flue gas, the reduction of selenite increased and the reduction reaction is an exothermic reaction. Meanwhile, the oxidation effect of S2O82- competes with the reduction effect of SO2. This study introduced the influence of flue gas into the research of the conversion of selenium in FGD slurry and indicate the effect of flue gas on the potential emission treatment techniques of selenium in FGD slurry.

9.
J Environ Manage ; 298: 113535, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391105

RESUMO

Blending flue gas desulfurization (FGD) gypsum with surface sodic soil is a universally recognized method for the rapid amelioration of sodic soils; however, little information is available on whether other application methods (band application) will reclaim sodic soil. Three FGD gypsum application methods (single-band, dual-band and blend applications) and a control treatment (non-FGD gypsum) were carried out using sodic soil in soil bins to investigate the effects of the application method on the wetting front, major cations in the leachate during the process of water infiltration and soluble and exchangeable cations in the soil profile after infiltration. The results showed that the wetting fronts in the band treatments were denser in the horizontal direction than in the vertical direction, but the blend and control treatments only had vertical migration. The main channel of the stream in the band treatment was concentrated below the application site of FGD gypsum. The orders of desalting capacity were blend treatment, dual-band treatment and single-band treatment for the same volume of outlet water. There was no water outflow in the control treatment even after 115 days of leaching. The dual-band treatment significantly decreased the soil sodicity of the 0-40 cm soil profile, while the single-band treatment only effectively reclaimed (horizontally) half of the soil. In the blend treatment, the exchangeable sodium percentages were 21.3 % and 34.7 % at depths of 30-35 cm and 35-40 cm, respectively, and were close to zero at a depth of 0-30 cm. Compared with blend treatment, band application could be a better way to reclaim sodic soil with FGD gypsum due to its advantages of long-term and efficient amelioration with low consumption.


Assuntos
Poluentes do Solo , Solo , Sulfato de Cálcio , Rios , Água
10.
J Hazard Mater ; 403: 123866, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264939

RESUMO

In order to reveal the affecting mechanisms of flue gas on As2O3 adsorption by γ-Al2O3 and to enhance the adsorbing capacities of γ-Al2O3, the influences of flue gas constituents on As2O3 adsorption on γ-Al2O3(0 0 1) surface are investigated theoretically via density functional theory (DFT) in this study. The flue gas constituents selected include O2, H2O, SO2 and CO2. O2 converts nearly all of the physisorption structures into chemisorption structures except one structure, in which the O2 electron cloud does not interact with As2O3 molecule and therefore does not enhance the capture of As2O3. For the effects of H2O, SO2 and CO2, they behave almost the same as those of O2, but the physisorption structures vary from different constituents. The difference of stable adsorption structures of O2, H2O, SO2 and CO2 on the surface of γ-Al2O3 and their corresponding properties are the main reason for variance of positions and quantities of As2O3 physisorption structures. Results of this study could provide useful information for enhancing capture capacities of γ-Al2O3 under actual flue gas environments.

11.
Chemosphere ; 257: 127243, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32505956

RESUMO

In order to protect selective catalytic reduction (SCR) catalysts for flue gas denitration in coal-fired power plants, the adsorption of As2O3 on γ-Al2O3(0 0 1) surface is investigated theoretically through density functional theory (DFT) in this study. The adsorption sites, adsorption structures, adsorption energies, electronic clouds, transition processes, and intermediate and transition structures are investigated. The theoretical results indicate that the adsorption of As2O3 molecule on the surface of γ-Al2O3(0 0 1) could be either physical or chemical, depending on the sites the molecule hangs over. Compared with the experimental results from other researchers, this study unveils that, although the apparent adsorption of As2O3 molecule on γ-Al2O3(0 0 1) surface is physical, some of the sites on γ-Al2O3(0 0 1) surface presents strong chemical affinity towards As2O3 adsorption. Further, this study depicts the adsorption process to clarify the reason of the net effect of As2O3 adsorption on γ-Al2O3 being physical. Meanwhile, the study also reveals that apparent physical adsorption of As2O3 on γ-Al2O3(0 0 1) surface is due to the high energy barrier that prohibits the transformation of physical adsorption to chemical adsorption. The research results provide useful information for exploiting γ-Al2O3 as a potential metal oxides sorbent.


Assuntos
Arseniatos/química , Adsorção , Catálise , Teoria da Densidade Funcional , Óxidos
12.
Chemosphere ; 241: 125028, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31629233

RESUMO

The kinetics of elemental mercury (Hg0) release from fly ashes and hydrated fly ash cement pastes was investigated using a homemade Hg measurement system. Three types of fly ash (FA) and ordinary Portland cement (OPC) were used to prepare cement pastes. After standard curing for 28 days, the hydrated cement paste (HCP) was ground into a fine powder for Hg emission measurements. Detectable Hg0 was found released from both fly ashes and hydrated fly ash cement pastes. The results show that elevated temperatures and evaporation of the capillary pore water in wet HCP samples accelerate Hg0 release. Both desorption of Hg0 from the particle surface of HCP powder and migration of Hg0 from the inner pores contribute to Hg0 release. The kinetic calculation indicates that the hydration products of hydrated fly ash cement have little immobilization effect on Hg0, which is mainly physically encapsulated in the HCP particles by hydration products.


Assuntos
Cinza de Carvão/química , Materiais de Construção , Mercúrio/farmacocinética , Carbono , Temperatura Alta , Cinética , Água
13.
Materials (Basel) ; 12(4)2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30823529

RESUMO

Emission of hazardous trace elements, especially arsenic from fossil fuel combustion, have become a major concern. Under an oxidizing atmosphere, most of the arsenic converts to gaseous As2O3. CaO has been proven effective in capturing As2O3. In this study, the mechanisms of As2O3 adsorption on CaO surface under O2 atmosphere were investigated by density functional theory (DFT) calculation. Stable physisorption and chemisorption structures and related reaction paths are determined; arsenite (AsO33-) is proven to be the form of adsorption products. Under the O2 atmosphere, the adsorption product is arsenate (AsO43-), while tricalcium orthoarsenate (Ca3As2O8) and dicalcium pyroarsenate (Ca2As2O7) are formed according to different adsorption structures.

14.
RSC Adv ; 8(11): 6110-6119, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35539627

RESUMO

The activity and hydrothermal stability of Cu/SAPO and xMn-2Cu/SAPO for low-temperature selective catalytic reduction of NO x with ammonia were investigated. An ion-exchanged method was employed to synthesize xMn-2Cu/SAPO, which was characterized by N2 adsorption, ICP-AES, X-ray diffraction (XRD), NH3-temperature programmed desorption (NH3-TPD), NO oxidation, X-ray photoelectron spectrum (XPS), UV-vis, H2-temperature programmed reduction (H2-TPR) and diffuse reflectance infrared Fourier transform spectra (DRIFTS). 2Mn-2Cu/SAPO and 4Mn-2Cu/SAPO showed the best SCR activity, in that at 150 °C NO conversion reached 76% and N2 selectivity was above 95% for the samples. NO oxidation results showed that the 2Mn-2Cu/SAPO had the best NO oxidation activity and the BET surface area decreased as manganese loading increased. XRD results showed that the metal species was well dispersed. NH3-TPD showed that the acid sites have no significant influence on the SCR activity of xMn-2Cu/SAPO. H2-TPR patterns showed good redox capacity for xMn-2Cu/SAPO. UV-vis and H2-TPR showed that the ratio of Mn4+ to Mn3+ increased as manganese loading increased. XPS spectra showed a significant amount of Mn3+ and Mn4+ species on the surface and addition of manganese increased the ratio of Cu2+. The promotion effect of manganese to 2Cu/SAPO comes from the generation of Mn3+ and Mn4+ species. Deduced from the DRIFTS spectra, the Elay-Rideal mechanism was effective on 4Mn-2Cu/SAPO.

15.
J Phys Chem A ; 121(39): 7385-7392, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28876935

RESUMO

Zerovalent Se (Se atom and small Se2 molecule) adsorption mechanisms on a CaO surface were studied by both density functional theory (DFT) calculations and adsorption experiments. Nonvalent Se adsorption on the CaO(001) surface was simulated using a slab model. The adsorption energy, adsorption structure, electron density clouds, and electron properties were calculated. Different Se surface coverages were investigated to elucidate the adsorption process. In the experiments, the Se adsorption products were prepared in a U-shaped quartz reactor at 300 °C. The properties were investigated by X-ray photoelectron spectroscopy (XPS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), field emission scanning electron microscopy/energy dispersive X-ray spectroscopy (FE-SEM/EDS), and X-ray diffraction (XRD), respectively. The experimental results match up with the DFT results, which reveal fundamental monochemisorption mechanisms of zerovalent Se on the CaO surface.

16.
J Environ Sci (China) ; 43: 169-176, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27155422

RESUMO

A considerable amount of Hg is retained in flue gas desulfurization (FGD) gypsum from Wet Flue Gas Desulfurization (WFGD) systems. For this reason, it is important to determine the species of Hg in FGD gypsum not only to understand the mechanism of Hg removal by WFGD systems but also to determine the final fate of Hg when FGD gypsum is disposed. In this study, Temperature Programmed Decomposition (TPD) and Sequential Chemical Extraction (SCE) were applied to FGD gypsum to identify the Hg species in it. The FGD gypsum samples were collected from seven coal-fired power plants in China, with Hg concentrations ranging from 0.19 to 3.27µg/g. A series of pure Hg compounds were used as reference materials in TPD experiments and the results revealed that the decomposition temperatures of different Hg compounds increase in the order of Hg2Cl2

Assuntos
Poluentes Atmosféricos/análise , Sulfato de Cálcio/química , Monitoramento Ambiental/métodos , Mercúrio/análise , Fracionamento Químico/métodos , Indústria do Carvão Mineral , Centrais Elétricas , Temperatura
17.
Environ Eng Sci ; 32(6): 470-478, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26064038

RESUMO

Although flue gas desulfurization (FGD) gypsum has become an effective soil amendment for sodic soil reclamation, it carries extra heavy metal contamination into the soil environment. The fate of heavy metals introduced by FGD gypsum in sodic or saline-alkali soils is still unclear. This work aims to investigate the effects of FGD gypsum addition on the heavy metal distributions in a sodic soil. Original soil samples were collected from typical sodic land in north China. Soil column leaching tests were conducted to investigate the influence of FGD gypsum addition on the soil properties, especially on distribution profiles of the heavy metals (Pb, Cd, Cr, As, and Hg) in the soil layers. Results showed that pH, electrical conductivity, and exchangeable sodium percentage in amended soils were significantly reduced from 10.2 to 8.46, 1.8 to 0.2 dS/m, and 18.14% to 1.28%, respectively. As and Hg concentrations in the soils were found to be positively correlated with FGD gypsum added. The amount of Hg in the leachate was positively correlated with FGD gypsum application ratio, whereas a negative correlation was observed between the Pb concentration in the leachate and the FGD gypsum ratio. Results revealed that heavy metal concentrations in soils complied well with Environmental Quality Standard for Soils in China (GB15618-1995). This work helps to understand the fate of FGD gypsum-introduced heavy metals in sodic soils and provides a baseline for further environmental risk assessment associated with applying FGD gypsum for sodic soil remediation.

18.
Environ Sci Technol ; 48(4): 2321-7, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24428761

RESUMO

The production of polyvinyl chloride (PVC) via the calcium carbide process utilizes a catalyst containing large amounts of mercury (Hg) and is therefore one of the most important sources of anthropogenic Hg in China. To measure the emission of Hg from PVC production, we established a flowchart for the calcium carbide process, for which we quantified the Hg content of the material/product at each step. Results indicated that 71.5% of the total Hg (Hg(T)) was lost from the catalyst, most of which was recovered by the Hg remover, accounting for 46.0% of the total Hg (Hg(T)). We determined that 3.7% of the Hg(T) was released into the environment, mostly in solid wastes and byproducts such as hydrochloric acid. Furthermore, no Hg has been detected in the PVC end product. However, we were only able to account for 78.1% of the Hg across the whole system, leaving 21.7% unaccounted for in the mass balance. A rough estimation indicates that most of the "missing" Hg had accumulated in deposits on the inner surface of converters and downstream pipelines; however, the emission to the atmosphere was ≤ 1% of the Hg(T). For a PVC production line equipped with a Hg remover, emissions of Hg to the atmosphere have been estimated to be 4.9 g per tonne PVC. Currently, almost all calcium carbide facilities have been equipped with a Hg remover, which may reduce the release of Hg in China by ∼ 500 t/year.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Cloreto de Polivinila/síntese química , China , Resíduos Industriais/análise
19.
Environ Sci Technol ; 45(3): 1147-51, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21166388

RESUMO

CaO catalyzes NH(3) oxidation, while sulfated CaO catalyzes NO reduction by NH(3) in the presence of O(2), and the adsorption and transformation of ammonia over CaO and sulfated CaO has been investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to understand their catalytic mechanism. It has been found that ammonia is first adsorbed over Lewis or Brönsted acid sites, and later undergoes hydrogen abstraction giving rise to either NH(2) amide or NH imide intermediates. The intermediates react with NO or lattice O to produce N(2) or NO. Comparing the DRIFTS of NH(3) adsorption over CaO and sulfated CaO, it is obvious that ammonia adsorbed over CaO is activated mainly in NH form apt to react with surface oxygen to produce NO, while ammonia adsorbed over sulfated CaO is activated mainly in NH(2) form apt to reduce NO. The DRIFTS results agree with experimental data and explain the catalytic mechanisms of CaO and sulfated CaO.


Assuntos
Poluentes Atmosféricos/química , Amônia/química , Compostos de Cálcio/química , Óxido Nítrico/química , Óxidos/química , Sulfatos/química , Adsorção , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura
20.
Huan Jing Ke Xue ; 29(3): 819-24, 2008 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-18649551

RESUMO

The effect of sulfur compounds (including sulfur, sulfide, sulfite and sulfate), initial concentration of heavy metal and operating conditions on Pb emission in MSW incineration were investigated using a simulated tubular furnace with the simulated MSW. Operating conditions of the experiment included combustion chamber temperature and MSW residence time. The concentration of Pb was measured by ICP-AES after the digesting of samples including bottom ash, fly ash and flue gas according to related USEPA methods. The results indicated that all 4 sulfur compounds tended to increase Pb partitioning in fly ash and decrease Pb partitioning in bottom ash. The increasing of S and Na2S content tended to decrease Pb partitioning in bottom ash, meanwhile, the content of Na2SO3 and Na2SO4 have no significant effects on Pb partitioning. Incineration temperature showed a significant effect on Pb volatilization, and thus the Pb partitioning in fly ash increasing along with temperature went upwards. Pb did not partition in flue gas during the whole experimental temperature range. Furthermore, the effect of initial concentration of heavy metal had a significant influence on Pb partitioning. The more initial concentration of Pb was, the more Pb partitioned in bottom ash. MSW residence time was also investigated. The longer MSW residence time was, the less Pb partitioned in bottom ash.


Assuntos
Poluentes Atmosféricos/análise , Incineração , Chumbo/análise , Compostos de Enxofre/análise , Poluentes Atmosféricos/química , Carbono/análise , Cinza de Carvão , Monitoramento Ambiental , Chumbo/química , Material Particulado/análise , Compostos de Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA