Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 15(11): 21090-104, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25405739

RESUMO

The cross-talk between oocyte and somatic cells plays a crucial role in the regulation of follicular development and oocyte maturation. As a result, granulosa cell apoptosis causes follicular atresia. In this study, sheep granulosa cells were cultured under thermal stress to induce apoptosis, and melatonin (MT) was examined to evaluate its potential effects on heat-induced granulosa cell injury. The results demonstrated that the Colony Forming Efficiency (CFE) of granulosa cells was significantly decreased (heat 19.70% ± 1.29% vs. control 26.96% ± 1.81%, p < 0.05) and the apoptosis rate was significantly increased (heat 56.16% ± 13.95% vs. control 22.80% ± 12.16%, p < 0.05) in granulosa cells with thermal stress compared with the control group. Melatonin (10⁻7 M) remarkably reduced the negative effects caused by thermal stress in the granulosa cells. This reduction was indicated by the improved CFE and decreased apoptotic rate of these cells. The beneficial effects of melatonin on thermal stressed granulosa cells were not inhibited by its membrane receptor antagonist luzindole. A mechanistic exploration indicated that melatonin (10⁻7 M) down-regulated p53 and up-regulated Bcl-2 and LHR gene expression of granulosa cells under thermal stress. This study provides evidence for the molecular mechanisms of the protective effects of melatonin on granulosa cells during thermal stress.


Assuntos
Células da Granulosa/citologia , Células da Granulosa/metabolismo , Melatonina/metabolismo , Ovinos/fisiologia , Estresse Fisiológico , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Feminino , Temperatura , Regulação para Cima
2.
Int J Mol Sci ; 15(7): 12107-18, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25007067

RESUMO

In this study, the effects of melatonin (MT) on superovulation and reproductive hormones (melatonin, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and PRL) were investigated in female sika deer. Different doses (40 or 80 mg/animal) of melatonin were subcutaneously implanted into deer before the breeding season. Exogenous melatonin administration significantly elevated the serum FSH levels at the time of insemination compared with levels in control animals. During superovulation, the serum LH levels in donor sika deer reached their highest values (7.1±2.04 ng/mL) at the point of insemination, compared with the baseline levels (4.98±0.07 ng/mL) in control animals. This high level of LH was sustained until the day of embryo recovery. In contrast, the serum levels of PRL in the 80 mg of melatonin-treated group were significantly lower than those of control deer. The average number of corpora lutea in melatonin-treated deer was significantly higher than that of the control (p<0.05). The average number of embryos in the deer treated with 40 mg of melatonin was higher than that of the control; however, this increase did not reach significant difference (p>0.05), which may be related to the relatively small sample size. In addition, embryonic development in melatonin-treated groups was delayed.


Assuntos
Cervos/fisiologia , Hormônio Luteinizante/sangue , Melatonina/farmacologia , Superovulação/efeitos dos fármacos , Animais , Feminino , Hormônio Foliculoestimulante/sangue , Melatonina/sangue , Superovulação/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA