Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 32(31)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33836512

RESUMO

In this work, through thein situgrowth of MnO2nanosheets on the surface of terbium metal-organic frameworks (Tb-MOFs), MOF@MnO2nanocomposites are prepared and the fluorescence of Tb-MOFs is quenched significantly by MnO2. Additionally, the hybrid nanoflowers are self-assembled by cholesterol oxidase (ChOx) and copper phosphate (Cu3(PO4)2·3H2O). Then a new strategy for cholesterol determination is developed based on MOF@MnO2nanocomposites and hybrid nanoflowers. Cholesterol is oxidized under the catalysis of hybrid nanoflowers to yield H2O2, which further reduces MnO2nanosheets into Mn2+. Hence, the fluorescence recovery of Tb-MOFs is positively correlated to the concentration of cholesterol in the range of 10 to 360µM. The limit of detection (LOD) of cholesterol is 1.57µM. On the other hand, the hierarchical and confined structure of ChOx-inorganic hybrid nanoflowers greatly improve the stability of the enzyme. The activity of hybrid nanoflowers remains at a high level for one week when stored at room temperature. Moreover, the hybrid nanoflowers can be collected by centrifugation and reused. The activity of hybrid nanoflowers can continue at a high level for five cycles of determination. Therefore, it can be concluded that the hybrid nanoflowers are more stable and more economic than free enzymes, and they show a similar sensitivity and specificity to cholesterol compared with free ChOx. Finally, this strategy has been further validated for the determination of cholesterol in serum samples with satisfactory recoveries.


Assuntos
Colesterol Oxidase/metabolismo , Colesterol/análise , Compostos de Manganês/química , Óxidos/química , Térbio/química , Biocatálise , Estabilidade de Medicamentos , Humanos , Peróxido de Hidrogênio/química , Limite de Detecção , Nanocompostos , Reciclagem , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Anal Bioanal Chem ; 413(9): 2553-2563, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33575817

RESUMO

Herein, the self-assembly of 1-dodecanethiol-capped Cu nanoclusters (DT-Cu NCs) is obtained by annealing of dibenzyl ether solution of nanoclusters. These aggregates are composed of small clusters and emit a high level of aggregation-induced emission (AIE) in water. Based on the quenching effect of 4-nitrophenol (4-NP) on DT-Cu NCs, a fluorescence strategy is developed to monitor α-glucosidase (α-Glu) activity and screen its inhibitors from Chinese herbal medicines. 4-Nitrophenyl-α-D-glucopyranoside (NGP) is selected as the substrate, which is further hydrolyzed to yield 4-NP through the catalysis of α-Glu. The quenching efficiency is positively correlated to the concentration of α-Glu. Furthermore, the inhibitory effects of the extracts from four Chinese herbal medicines (i.e., the rind of Punica granatum L., Momordica grosvenorii Swingle., Crataegus pinnatifida Bge., and Lycium barbarum L.) on the α-Glu activity have been studied. The IC50 values of extracts from the rind of Punica granatum L. and Momordica grosvenorii Swingle are 0.23 and 0.37 g/L, respectively, so they show obvious inhibitory effects on α-Glu. The extracts of Crataegus pinnatifida Bge. and Lycium barbarum L. exhibit relatively weak inhibitory effects. Hence, the proposed strategy can be applicable for screening α-Glu inhibitors from Chinese herbal medicines. Last but not the least, by immobilizing DT-Cu NCs into agarose hydrogels in polyethylene tubes, a visual device is fabricated to screen α-Glu inhibitors with high throughput and sensitivity.


Assuntos
Cobre/química , Medicamentos de Ervas Chinesas/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Nanopartículas/química , alfa-Glucosidases/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios Enzimáticos/métodos , Fluorescência , Humanos , Nanopartículas/ultraestrutura , Espectrometria de Fluorescência/métodos
3.
Anal Bioanal Chem ; 411(28): 7431-7440, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31655858

RESUMO

Alkaline phosphatase (ALP) is an important enzyme that is associated with many human diseases, so the quantitative detection of ALP is vital from a clinical perspective. Nevertheless, most fluorescent assays for monitoring ALP depend on aggregation-induced quenching (ACQ), single-signal modulation, or a "signal off" mode, which suffer from poor sensitivity, a "false positive" problem, and low signal output. In this work, we utilized the electrostatically driven self-assembly of glutathione-capped gold nanoclusters (GSH-AuNCs, which show aggregation-induced emission, AIE) and amino-modified silicon nanoparticles (SiNPs) to create a hybrid probe (SiNPs@GSH-AuNCs). This nanohybrid probe showed emission from the SiNPs at around 470 nm as well as aggregation-induced emission enhancement (AIEE) of the GSH-AuNCs at 580 nm. The AIEE of the GSH-AuNCs was quenched in the presence of KMnO4, but the AIEE was recovered by adding ascorbic acid as an oxidation-reduction reaction occurred between KMnO4 and the ascorbic acid. The fluorescence of the SiNPs remained constant whether the AIEE was quenched or not, meaning that the fluorescence of the SiNPs could be used as an internal reference. In a typical enzymatic reaction, ascorbic acid 2-phosphate is hydrolyzed by ALP to produce ascorbic acid. Therefore, the hybrid probe was shown to allow the ratiometric detection of ALP, with a linear range of 0.5-10 U L-1 and a limit of detection (LOD) of 0.23 U L-1. Finally, the proposed analytical strategy was successfully applied to detect ALP in human serum samples and to determine the concentration of an ALP inhibitor. Graphical Abstract.


Assuntos
Fosfatase Alcalina/sangue , Ouro/química , Fosfatase Alcalina/análise , Ácido Ascórbico/análise , Inibidores Enzimáticos/análise , Glutationa/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Padrões de Referência , Silício/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA