Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 358: 107614, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141495

RESUMO

Radio-frequency (RF) field calibration is essential in NMR spectroscopy. A common practice is to collect a nutation curve by varying the pulse length in a direct single-pulse excitation experiment or in a cross-polarization magic-angle spinning with a flip-back pulse experiment. From the null points on this curve, one can calculate the RF field strength. Nevertheless, the practical implementation is not always straightforward or can even be unrealizable, especially for low-receptivity nuclei owing to their associated low sensitivity. Several researchers used an approach that involves utilizing other nuclei with more sensitivity but nearly identical Larmor frequencies to that of the nucleus of interest. However, such an approach has not been a common practice so far. In this work, we have systematically revisited this approach using 3.2 mm rotors on different sets of nuclei covering a Larmor frequency range up to 80 MHz. The effect of solid- and solution-states on RF field strength measurements has been investigated. The detection of each set of nuclei is then carried out with a resonant circuit in the NMR probe consisting of identical coils and capacitors. Our methodology is illustrated by recording 135/137Ba NMR spectra of BaTiO3 without prior 135/137Ba RF field calibration.

2.
J Phys Chem Lett ; 14(43): 9619-9623, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870262

RESUMO

Dynamic nuclear polarization can improve the sensitivity of magic-angle spinning solid-state NMR experiments by 1-2 orders of magnitude. In aqueous media, experiments are usually performed using the so-called DNP juice, a glycerol-d8/D2O/H2O mixture (60/30/10, v/v/v) that can form a homogeneous glass at cryogenic temperatures. This acts as a cryoprotectant and prevents phase separation of the paramagnetic polarizing agents (PAs) that are added to the mixture to provide the source of electron spin polarization required for DNP. Here, we show that relatively high 1H DNP enhancements (∼60) can also be obtained in water without glycerol (or other glass forming agents) simply by dissolving high concentrations of electrolytes (such as NaCl or LiCl), which perturb the otherwise unavoidable ice crystallization observed upon cooling, thereby reducing PA phase separation and restoring DNP efficiency.

3.
J Funct Biomater ; 14(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37754896

RESUMO

The novel amphiphilic polyacrylate grafted with cholesterol moieties, PAAbCH, previously synthesized, was deeply characterized and investigated in the lab and on a pre-industrial scale. Solid-state NMR analysis confirmed the polymer structure, and several water-based pharmaceutical and cosmetic products were developed. In particular, stable oil/water emulsions with vegetable oils, squalene, and ceramides were prepared, as well as hydrophilic medicated films loaded with diclofenac, providing a prolonged drug release. PAAbCH also formed polyelectrolyte hydrogel complexes with chitosan, both at the macro- and nano-scale. The results demonstrate that this polymer has promising potential as an innovative excipient, acting as a solubility enhancer, viscosity enhancer, and emulsifying agent with an easy scale-up transfer process.

4.
Chem Sci ; 14(37): 10121-10128, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37772100

RESUMO

Solid-state DNP NMR can enhance the ability to detect minor amounts of solid phases within heterogenous materials. Here we demonstrate that NMR contrast based on the transport of DNP-enhanced polarization can be exploited in the challenging case of early detection of a small amount of a minor polymorphic phase within a major polymorph, and we show that this approach can yield quantitative information on the spatial distribution of the two polymorphs. We focus on the detection of a minor amount (<4%) of polymorph III of m-aminobenzoic acid within a powder sample of polymorph I at natural isotopic abundance. Based on proposed models of the spatial distribution of the two polymorphs, simulations of 1H spin diffusion allow NMR data to be calculated for each model as a function of particle size and the relative amounts of the polymorphs. A comparison between simulated and experimental NMR data allows the model(s) best representing the spatial distribution of the polymorphs in the system to be established.

6.
Solid State Nucl Magn Reson ; 122: 101836, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36327551

RESUMO

Crystallization is fundamental in many domains, and the investigation of the sequence of solid phases produced as a function of crystallization time is thus key to understand and control crystallization processes. Here, we used a solid-state nuclear magnetic resonance strategy to monitor the crystallization process of glycine, which is a model compound in polymorphism, under the influence of crystallizing additives, such as methanol or sodium chloride. More specifically, our strategy is based on a combination of low-temperatures and dynamic nuclear polarization (DNP) to trap and detect transient crystallizing forms, which may be present only in low quantities. Interestingly, our results show that these additives yield valuable DNP signal enhancements even in the absence of glycerol within the crystallizing solution.


Assuntos
Glicina , Imageamento por Ressonância Magnética , Cristalização , Espectroscopia de Ressonância Magnética/métodos , Temperatura Baixa
7.
Phys Chem Chem Phys ; 24(41): 25279-25286, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36226439

RESUMO

Dynamic nuclear polarisation (DNP) can significantly enhance the sensitivity of solid-state nuclear magnetic resonance (SSNMR) experiments by transferring the electron spin polarisation of paramagnetic species to nuclei through microwave irradiation of the sample at cryogenic temperatures. Paramagnetic species required for DNP can be provided in the form of mesoporous silica materials containing nitroxide radicals either located on the porous surface or embedded in the pore walls. The present study focuses specifically on porous materials with wall-embedded radicals that were synthesised using conventional molecular imprinting protocols. More remarkably, by changing the molecular structure of the TEMPO precursor, the theoretical distance between the oxygen atoms in a pair of wall-embedded face-to-face TEMPO radicals was increased stepwise (0.7, 0.9, 1.1, 1.3 and 1.5 nm). The thermal activation of these five series of materials led to 37 TEMPO-functionalised silica materials with different radical concentrations. Their efficiency as DNP polarising agents was subsequently investigated at 9.4 T and ∼110 K under magic-angle spinning conditions (10 kHz) after impregnating them at room temperature with an aqueous solution of isotopically enriched proline. Our results show that the highest DNP efficiency was obtained for the silica materials that exhibited the shortest theoretical oxygen-oxygen distance between the TEMPO rings, suggesting that the design rules accepted for soluble DNP polarising agents may not be transposed to these materials with wall-embedded pairs of nitroxides.

8.
Magn Reson Chem ; 60(12): 1171-1177, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049117

RESUMO

In this study, supercritical CO2 (scCO2 ) was used to impregnate polymers with paramagnetic polarizing agents to prepare samples for dynamic nuclear polarization (DNP) solid-state NMR (ssNMR) experiments. As a proof of concept, we impregnated polystyrene samples with bTbK, which stands for bis-TEMPO-bisketal where TEMPO is 2,2,6,6-tetra-methylpiperindin-1-oxyl. Substantial DNP signal enhancements could be measured on DNP-enhanced 1 H → 13 C cross-polarization (CP) magic-angle spinning (MAS) spectra recorded at 9.4 T and ~100 K, reaching a maximum value of 8 in the most favorable case, which appeared comparable or even higher than what is typically obtained on similar systems for former sample preparation methods. These results highlight the potential of scCO2 impregnation as an efficient and possibly versatile methodology to prepare polymer samples for DNP ssNMR investigations.


Assuntos
Dióxido de Carbono , Polímeros , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética
9.
Sci Total Environ ; 829: 154601, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35307449

RESUMO

The chemistry of silicon (Si), the second most abundant element in soil after oxygen, is not yet fully understood in the soil-water-plant continuum. Although Si is widely accepted as an element that has little or no interaction with natural organic matter, some data seems to show the opposite. To identify a potential interaction between natural organic matter and Si, batch experiments were achieved at various pH and Si concentrations, involving also Al3+ as a common ion in soil and using humic acid (HA) as a typical model for natural organic matter. Several complementary techniques were used to characterize the possible complexes formed in the dissolved or solid phases: molecular fluorescence spectroscopy, 29Si solid-state NMR, Fourier transform infrared spectroscopy, quantification of Si, Al and organic carbon, and nanoparticle size distribution. These tools revealed that humic acid indeed interacts, but weakly, with Si alone. In the presence of Al, however, a ternary complex HA-Al-Si forms, likely with Al as the bridging atom. The presence of Si promotes the maintenance of both Al and dissolved organic matter (DOM) in solution, which is likely to modify the result or the kinetics of pedogenesis. Such complexes can also play a role in the control of Al toxicity towards plants and probably also exists with other metals, such as Fe or Mn, and other metalloids such as As.


Assuntos
Substâncias Húmicas , Poluentes do Solo , Alumínio/química , Substâncias Húmicas/análise , Plantas , Silício , Solo/química , Poluentes do Solo/análise
10.
Sci Rep ; 11(1): 8538, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879803

RESUMO

Pyomelanin is a polymer of homogentisic acid synthesized by microorganisms. This work aimed to develop a production process and evaluate the quality of the pigment. Three procedures have been elaborated and optimized, (1) an HGA-Mn2+ chemical autoxidation (PyoCHEM yield 0.317 g/g substrate), (2) an induced bacterial culture of Halomonas titanicae through the 4-hydroxyphenylacetic acid-1-hydroxylase route (PyoBACT, 0.55 g/L), and (3) a process using a recombinant laccase extract with the highest level produced (PyoENZ, 1.25 g/g substrate) and all the criteria for a large-scale prototype. The chemical structures had been investigated by 13C solid-state NMR (CP-MAS) and FTIR. Car-Car bindings predominated in the three polymers, Car-O-Car (ether) linkages being absent, proposing mainly C3-C6 (α-bindings) and C4-C6 (ß-bindings) configurations. This work highlighted a biological decarboxylation by the laccase or bacterial oxidase(s), leading to the partly formation of gentisyl alcohol and gentisaldehyde that are integral parts of the polymer. By comparison, PyoENZ exhibited an Mw of 5,400 Da, was hyperthermostable, non-cytotoxic even after irradiation, scavenged ROS induced by keratinocytes, and had a highly DPPH-antioxidant and Fe3+-reducing activity. As a representative pigment of living cells and an available standard, PyoENZ might also be useful for applications in extreme conditions and skin protection.

11.
J Am Chem Soc ; 143(16): 6095-6103, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856790

RESUMO

Establishing mechanistic understanding of crystallization processes at the molecular level is challenging, as it requires both the detection of transient solid phases and monitoring the evolution of both liquid and solid phases as a function of time. Here, we demonstrate the application of dynamic nuclear polarization (DNP) enhanced NMR spectroscopy to study crystallization under nanoscopic confinement, revealing a viable approach to interrogate different stages of crystallization processes. We focus on crystallization of glycine within the nanometric pores (7-8 nm) of a tailored mesoporous SBA-15 silica material with wall-embedded TEMPO radicals. The results show that the early stages of crystallization, characterized by the transition from the solution phase to the first crystalline phase, are straightforwardly observed using this experimental strategy. Importantly, the NMR sensitivity enhancement provided by DNP allows the detection of intermediate phases that would not be observable using standard solid-state NMR experiments. Our results also show that the metastable ß polymorph of glycine, which has only transient existence under bulk crystallization conditions, remains trapped within the pores of the mesoporous SBA-15 silica material for more than 200 days.


Assuntos
Espectroscopia de Ressonância Magnética , Dióxido de Silício/química , Cristalização , Óxidos N-Cíclicos/química , Porosidade
12.
Molecules ; 26(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800794

RESUMO

Pesticides are widely used in agriculture to increase and protect crop production. A substantial percentage of the active substances applied is retained in the soil or flows into water courses, constituting a very relevant environmental problem. There are several methods for the removal of pesticides from soils and water; however, their efficiency is still a challenge. An alternative to current methods relies on the use of effective adsorbents in removing pesticides which are, simultaneously, capable of releasing pesticides into the soil when needed. This reduces costs related to their application and waste treatments and, thus, overall environmental costs. In this paper, we describe the synthesis and preparation of activated carbon-containing poly(ß-cyclodextrin) composites. The composites were characterized by different techniques and their ability to absorb pesticides was assessed by using two active substances: cymoxanil and imidacloprid. Composites with 5 and 10 wt% of activated carbon showed very good stability, high removal efficiencies (>75%) and pesticide sorption capacity up to ca. 50 mg g-1. The effect of additives (NaCl and urea) was also evaluated. The composites were able to release around 30% of the initial sorbed amount of pesticide without losing the capacity to keep the maximum removal efficiency in sorption/desorption cycles.


Assuntos
Carvão Vegetal/química , Géis/química , Praguicidas/análise , Praguicidas/isolamento & purificação , Propilenoglicóis/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , beta-Ciclodextrinas/química
13.
Magn Reson Chem ; 58(11): 1076-1081, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31972055

RESUMO

We show here that the Electronic Mixing-Mediated Annihilation (EMMA) method, previously reported for the suppression of background signals in solid-state nuclear magnetic resonance spectra, can be successfully applied to remove the solvent signals observed in the case of nuclear magnetic resonance spectra obtained with dynamic nuclear polarization. The methodology presented here is applied to two standard sample preparation methods for dynamic nuclear polarization, namely, glass forming and incipient wetness impregnation. It is demonstrated that the Electronic Mixing-Mediated Annihilation method is complementary to the different methods for solvent suppression based on relaxation filters and that it can be used to preserve the quantitative information that might be present in the pristine spectra.

14.
RSC Adv ; 10(14): 8266-8274, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497815

RESUMO

Short-term, aqueous aging of a commercial nanocomposite TiO2 UV filter with a protective SiO2 shell was examined in abiotic simulated fresh- and seawater. Under these conditions, the SiO2 layer was quantitatively removed (∼88-98%) within 96 hours, as determined using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). While these bulk ICP-AES analyses suggested almost identical SiO2 shell degradation after aging in fresh- and seawater, surface sensitive 29Si dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (SSNMR), with signal enhancements of 5-10× compared to standard SSNMR, was able to distinguish differences in the aged nanocomposites at the molecular level. DNP-SSNMR revealed that the attachment of the silica layer to the underlying TiO2 core rested on substantial Si-O-Ti bond formation, bonds which were preserved after freshwater aging, yet barely present after aging in seawater. The removal of the protective SiO2 layer is due to ionic strength accelerated dissolution, which could present significant consequences to aqueous environments when the photoactive TiO2 core becomes exposed. This work demonstrates the importance of characterizing aged nanocomposites not only on the bulk scale, but also on the molecular level by employing surface sensitive techniques, such as DNP-NMR. Molecular level details on surface transformation and elemental speciation will be crucial for improving the environmental safety of nanocomposites.

15.
Angew Chem Int Ed Engl ; 58(45): 16047-16051, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31397043

RESUMO

Vicinal scalar couplings (3 J) are extensively used for the conformational analysis of organic compounds in the liquid state through empirical Karplus equations. In contrast, there are no examples of such use for the structural investigation of solids. With the support of first principles calculations, we demonstrate here that 13 C-13 C 3 J coupling constants (3 JCC ) measured on a series of isotopically enriched solid amino acids and sugars can be related to dihedral angles by a simple Karplus-like relationship, and we provide a parameterized Karplus function for the conformational analysis of organic molecular crystals. Under the experimental conditions discussed, torsional angles can be estimated from the experimental 3 JCC values with an accuracy of 10° using this function. These results open new perspectives towards the use of 3 JCC as a new analytical tool that could considerably simplify structure determination of functional organic solids.

16.
J Phys Chem Lett ; 10(7): 1505-1510, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30882228

RESUMO

Crystallization plays an important role in many areas, and to derive a fundamental understanding of crystallization processes, it is essential to understand the sequence of solid phases produced as a function of time. Here, we introduce a new NMR strategy for studying the time evolution of crystallization processes, in which the crystallizing system is quenched rapidly to low temperature at specific time points during crystallization. The crystallized phase present within the resultant "frozen solution" may be investigated in detail using a range of sophisticated NMR techniques. The low temperatures involved allow dynamic nuclear polarization (DNP) to be exploited to enhance the signal intensity in the solid-state NMR measurements, which is advantageous for detection and structural characterization of transient forms that are present only in small quantities. This work opens up the prospect of studying the very early stages of crystallization, at which the amount of solid phase present is intrinsically low.

17.
J Environ Manage ; 239: 178-186, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30901696

RESUMO

Production of second-generation bioethanol uses lignocellulose from agricultural by-products such as sugarcane bagasse (SCB). A lignocellulose pre-treatment is required to degrade lignin, ensuring further efficient saccharification. Two experimental designs were set up to define culture conditions of Pycnoporus sanguineus in mesocosms to increase laccase activities and thus delignification. The first experimental design tested the effect of phenolic complementation (via coffee pulp) and the use of urea as a simple nitrogen source and the second defined more precisely the percentages of coffee pulp and urea to enhance delignification. The responses measured were: lignocellulolytic activities, laccase isoform profiles by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the chemical transformation of the substrate using solid-state NMR of 13C. Adding 10% of coffee pulp increased laccase activities and fungal biomass (32.5% and 16% respectively), enhanced two constitutive isoforms (Rf 0.23 and 0.27), induced a new isoform (Rf 0.19) and led to a decrease in total aromatics. However, higher concentrations of coffee pulp (25%) decreased laccase and cellulase activities but no decrease in aromaticity was observed, potentially due to the toxic effect of phenols from coffee pulp. Moreover, laccase production was still inhibited even for lower concentrations of urea (0-5%). Our findings revealed that an agricultural by-product like coffee pulp can enhance laccase activity -though to a threshold- and that urea limited this process, indicating that other N-sources should be tested for the biological delignification of SCB.


Assuntos
Celulase , Celulases , Pycnoporus , Saccharum , Celulose , Café , Lacase , Lignina , Ureia
18.
Solid State Nucl Magn Reson ; 99: 15-19, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30836289

RESUMO

A method based on highly concentrated radical solutions is investigated for the suppression of the NMR signals arising from solvents that are usually used for dynamic nuclear polarization experiments. The presented method is suitable in the case of powders, which are impregnated with a radical-containing solution. It is also demonstrated that the intensity and the resolution of the signals due to the sample of interest is not affected by the high concentration of radicals. The method proposed here is therefore valuable when sensitivity is of the utmost importance, namely samples at natural isotopic abundance.

19.
Magn Reson Chem ; 57(5): 256-264, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30735578

RESUMO

Structure determination of functional organic compounds remains a formidable challenge when the sample exists as a powder. Nuclear magnetic resonance crystallography approaches based on the comparison of experimental and Density Functional Theory (DFT)-computed 1 H chemical shifts have already demonstrated great potential for structure determination of organic powders, but limitations still persist. In this study, we discuss the possibility of using 13 C-13 C dipolar couplings quantified on powdered theophylline at natural isotopic abundance with the help of dynamic nuclear polarization, to realize a DFT-free, rapid screening of a pool of structures predicted by ab initio random structure search. We show that although 13 C-13 C dipolar couplings can identify structures possessing long range structural motifs and unit cell parameters close to those of the true structure, it must be complemented with other data to recover information about the presence and the chemical nature of the supramolecular interactions.

20.
Angew Chem Int Ed Engl ; 57(22): 6619-6623, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29633439

RESUMO

In situ solid-state NMR spectroscopy is exploited to monitor the structural evolution of a glycine/water glass phase formed on flash cooling an aqueous solution of glycine, with a range of modern solid-state NMR methods applied to elucidate structural properties of the solid phases present. The glycine/water glass is shown to crystallize into an intermediate phase, which then transforms to the ß polymorph of glycine. Our in situ NMR results fully corroborate the identity of the intermediate crystalline phase as glycine dihydrate, which was first proposed only very recently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...