Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 17: 321, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142449

RESUMO

BACKGROUND: Solanum sect. Basarthrum is phylogenetically very close to potatoes (Solanum sect. Petota) and tomatoes (Solanum sect. Lycopersicon), two groups with great economic importance, and for which Solanum sect. Basarthrum represents a tertiary gene pool for breeding. This section includes the important regional cultigen, the pepino (Solanum muricatum), and several wild species. Among the wild species, S. caripense is prominent due to its major involvement in the origin of pepino and its wide geographical distribution. Despite the value of the pepino as an emerging crop, and the potential for gene transfer from both the pepino and S. caripense to potatoes and tomatoes, there has been virtually no genomic study of these species. RESULTS: Using Illumina HiSeq 2000, RNA-Seq was performed with a pool of three tissues (young leaf, flowers in pre-anthesis and mature fruits) from S. muricatum and S. caripense, generating almost 111,000,000 reads among the two species. A high quality de novo transcriptome was assembled from S. muricatum clean reads resulting in 75,832 unigenes with an average length of 704 bp. These unigenes were functionally annotated based on similarity of public databases. We used Blast2GO, to conduct an exhaustive study of the gene ontology, including GO terms, EC numbers and KEGG pathways. Pepino unigenes were compared to both potato and tomato genomes in order to determine their estimated relative position, and to infer gene prediction models. Candidate genes related to traits of interest in other Solanaceae were evaluated by presence or absence and compared with S. caripense transcripts. In addition, by studying five genes, the phylogeny of pepino and five other members of the family, Solanaceae, were studied. The comparison of S. caripense reads against S. muricatum assembled transcripts resulted in thousands of intra- and interspecific nucleotide-level variants. In addition, more than 1000 SSRs were identified in the pepino transcriptome. CONCLUSIONS: This study represents the first genomic resource for the pepino. We suggest that the data will be useful not only for improvement of the pepino, but also for potato and tomato breeding and gene transfer. The high quality of the transcriptome presented here also facilitates comparative studies in the genus Solanum. The accurate transcript annotation will enable us to figure out the gene function of particular traits of interest. The high number of markers (SSR and nucleotide-level variants) obtained will be useful for breeding programs, as well as studies of synteny, diversity evolution, and phylogeny.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Solanum lycopersicum/genética , Solanum/classificação , Evolução Molecular , Flores/genética , Ontologia Genética , Variação Genética , Anotação de Sequência Molecular , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/genética , Solanum/genética , Solanum tuberosum/genética
2.
Plant Methods ; 12: 10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839579

RESUMO

BACKGROUND: The efficiency, versatility and multiplexing capacity of RNA-guided genome engineering using the CRISPR/Cas9 technology enables a variety of applications in plants, ranging from gene editing to the construction of transcriptional gene circuits, many of which depend on the technical ability to compose and transfer complex synthetic instructions into the plant cell. The engineering principles of standardization and modularity applied to DNA cloning are impacting plant genetic engineering, by increasing multigene assembly efficiency and by fostering the exchange of well-defined physical DNA parts with precise functional information. RESULTS: Here we describe the adaptation of the RNA-guided Cas9 system to GoldenBraid (GB), a modular DNA construction framework being increasingly used in Plant Synthetic Biology. In this work, the genetic elements required for CRISPRs-based editing and transcriptional regulation were adapted to GB, and a workflow for gRNAs construction was designed and optimized. New software tools specific for CRISPRs assembly were created and incorporated to the public GB resources site. CONCLUSIONS: The functionality and the efficiency of gRNA-Cas9 GB tools were demonstrated in Nicotiana benthamiana using transient expression assays both for gene targeted mutations and for transcriptional regulation. The availability of gRNA-Cas9 GB toolbox will facilitate the application of CRISPR/Cas9 technology to plant genome engineering.

3.
BMC Biol ; 12: 46, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24912445

RESUMO

BACKGROUND: Relatively recent evidence indicates that ABCC2 transporters play a main role in the mode of action of Bacillus thuringiensis (Bt) Cry1A-type proteins. Mapping of major Cry1A resistance genes has linked resistance to the ABCC2 locus in Heliothis virescens, Plutella xylostella, Trichoplusia ni and Bombyx mori, and mutations in this gene have been found in three of these Bt-resistant strains. RESULTS: We have used a colony of Spodoptera exigua (Xen-R) highly resistant to a Bt commercial bioinsecticide to identify regions in the S. exigua genome containing loci for major resistance genes by using bulk segregant analysis (BSA). Results reveal a region containing three genes from the ABCC family (ABBC1, ABBC2 and ABBC3) and a mutation in one of them (ABBC2) as responsible for the resistance of S. exigua to the Bt commercial product and to its key Spodoptera-active ingredients, Cry1Ca. In contrast to all previously described mutations in ABCC2 genes that directly or indirectly affect the extracellular domains of the membrane protein, the ABCC2 mutation found in S. exigua affects an intracellular domain involved in ATP binding. Functional analyses of ABBC2 and ABBC3 support the role of both proteins in the mode of action of Bt toxins in S. exigua. Partial silencing of these genes with dsRNA decreased the susceptibility of wild type larvae to both Cry1Ac and Cry1Ca. In addition, reduction of ABBC2 and ABBC3 expression negatively affected some fitness components and induced up-regulation of arylphorin and repat5, genes that respond to Bt intoxication and that are found constitutively up-regulated in the Xen-R strain. CONCLUSIONS: The current results show the involvement of different members of the ABCC family in the mode of action of B. thuringiensis proteins and expand the role of the ABCC2 transporter in B. thuringiensis resistance beyond the Cry1A family of proteins to include Cry1Ca.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacillus thuringiensis/química , Proteínas de Bactérias/farmacologia , Segregação de Cromossomos/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas/efeitos dos fármacos , Spodoptera/fisiologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Toxinas de Bacillus thuringiensis , Bombyx/genética , Segregação de Cromossomos/efeitos dos fármacos , Cruzamentos Genéticos , Feminino , Perfilação da Expressão Gênica , Genes de Insetos/genética , Resistência a Inseticidas/genética , Cinética , Larva/efeitos dos fármacos , Larva/metabolismo , Masculino , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Spodoptera/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 109(29): 11872-7, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753475

RESUMO

We report the genome sequence of melon, an important horticultural crop worldwide. We assembled 375 Mb of the double-haploid line DHL92, representing 83.3% of the estimated melon genome. We predicted 27,427 protein-coding genes, which we analyzed by reconstructing 22,218 phylogenetic trees, allowing mapping of the orthology and paralogy relationships of sequenced plant genomes. We observed the absence of recent whole-genome duplications in the melon lineage since the ancient eudicot triplication, and our data suggest that transposon amplification may in part explain the increased size of the melon genome compared with the close relative cucumber. A low number of nucleotide-binding site-leucine-rich repeat disease resistance genes were annotated, suggesting the existence of specific defense mechanisms in this species. The DHL92 genome was compared with that of its parental lines allowing the quantification of sequence variability in the species. The use of the genome sequence in future investigations will facilitate the understanding of evolution of cucurbits and the improvement of breeding strategies.


Assuntos
Evolução Biológica , Cucumis melo/genética , Genoma de Planta/genética , Filogenia , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Elementos de DNA Transponíveis/genética , Resistência à Doença/genética , Genes Duplicados/genética , Genes de Plantas/genética , Genômica/métodos , Funções Verossimilhança , Modelos Genéticos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
5.
BMC Genomics ; 13: 280, 2012 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-22726804

RESUMO

BACKGROUND: Melon (Cucumis melo L.) is a highly diverse species that is cultivated worldwide. Recent advances in massively parallel sequencing have begun to allow the study of nucleotide diversity in this species. The Sanger method combined with medium-throughput 454 technology were used in a previous study to analyze the genetic diversity of germplasm representing 3 botanical varieties, yielding a collection of about 40,000 SNPs distributed in 14,000 unigenes. However, the usefulness of this resource is limited as the sequenced genotypes do not represent the whole diversity of the species, which is divided into two subspecies with many botanical varieties variable in plant, flowering, and fruit traits, as well as in stress response. As a first step to extensively document levels and patterns of nucleotide variability across the species, we used the high-throughput SOLiD™ system to resequence the transcriptomes of a set of 67 genotypes that had previously been selected from a core collection representing the extant variation of the entire species. RESULTS: The deep transcriptome resequencing of all of the genotypes, grouped into 8 pools (wild African agrestis, Asian agrestis and acidulus, exotic Far Eastern conomon, Indian momordica and Asian dudaim and flexuosus, commercial cantalupensis, subsp. melo Asian and European landraces, Spanish inodorus landraces, and Piel de Sapo breeding lines) yielded about 300 M reads. Short reads were mapped to the recently generated draft genome assembly of the DHL line Piel de Sapo (inodorus) x Songwhan Charmi (conomon) and to a new version of melon transcriptome. Regions with at least 6X coverage were used in SNV calling, generating a melon collection with 303,883 variants. These SNVs were dispersed across the entire C. melo genome, and distributed in 15,064 annotated genes. The number and variability of in silico SNVs differed considerably between pools. Our finding of higher genomic diversity in wild and exotic agrestis melons from India and Africa as compared to commercial cultivars, cultigens and landraces from Eastern Europe, Western Asia and the Mediterranean basin is consistent with the evolutionary history proposed for the species. Group-specific SNVs that will be useful in introgression programs were also detected. In a sample of 143 selected putative SNPs, we verified 93% of the polymorphisms in a panel of 78 genotypes. CONCLUSIONS: This study provides the first comprehensive resequencing data for wild, exotic, and cultivated (landraces and commercial) melon transcriptomes, yielding the largest melon SNP collection available to date and representing a notable sample of the species diversity. This data provides a valuable resource for creating a catalog of allelic variants of melon genes and it will aid in future in-depth studies of population genetics, marker-assisted breeding, and gene identification aimed at developing improved varieties.


Assuntos
Cucumis melo/genética , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética , Cucumis melo/classificação , Variação Genética/genética , Genótipo
6.
BMC Genomics ; 12: 104, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21310031

RESUMO

BACKGROUND: Cucurbita pepo belongs to the Cucurbitaceae family. The "Zucchini" types rank among the highest-valued vegetables worldwide, and other C. pepo and related Cucurbita spp., are food staples and rich sources of fat and vitamins. A broad range of genomic tools are today available for other cucurbits that have become models for the study of different metabolic processes. However, these tools are still lacking in the Cucurbita genus, thus limiting gene discovery and the process of breeding. RESULTS: We report the generation of a total of 512,751 C. pepo EST sequences, using 454 GS FLX Titanium technology. ESTs were obtained from normalized cDNA libraries (root, leaves, and flower tissue) prepared using two varieties with contrasting phenotypes for plant, flowering and fruit traits, representing the two C. pepo subspecies: subsp. pepo cv. Zucchini and subsp. ovifera cv Scallop. De novo assembling was performed to generate a collection of 49,610 Cucurbita unigenes (average length of 626 bp) that represent the first transcriptome of the species. Over 60% of the unigenes were functionally annotated and assigned to one or more Gene Ontology terms. The distributions of Cucurbita unigenes followed similar tendencies than that reported for Arabidopsis or melon, suggesting that the dataset may represent the whole Cucurbita transcriptome. About 34% unigenes were detected to have known orthologs of Arabidopsis or melon, including genes potentially involved in disease resistance, flowering and fruit quality. Furthermore, a set of 1,882 unigenes with SSR motifs and 9,043 high confidence SNPs between Zucchini and Scallop were identified, of which 3,538 SNPs met criteria for use with high throughput genotyping platforms, and 144 could be detected as CAPS. A set of markers were validated, being 80% of them polymorphic in a set of variable C. pepo and C. moschata accessions. CONCLUSION: We present the first broad survey of gene sequences and allelic variation in C. pepo, where limited prior genomic information existed. The transcriptome provides an invaluable new tool for biological research. The developed molecular markers are the basis for future genetic linkage and quantitative trait loci analysis, and will be essential to speed up the process of breeding new and better adapted squash varieties.


Assuntos
Cucurbita/genética , Perfilação da Expressão Gênica , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , DNA de Plantas/genética , Flores/genética , Biblioteca Gênica , Genes de Plantas , Genótipo , Anotação de Sequência Molecular , Folhas de Planta/genética , Raízes de Plantas/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...