Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microorganisms ; 9(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34946104

RESUMO

European ash (Fraxinus excelsior) is highly affected by the pathogenic fungus Hymenoscyphus fraxineus in all of Europe. Increases in plant's secondary metabolite (SM) production is often linked tol enhanced resistance to stress, both biotic and abiotic. Moreover, plant-associated bacteria have been shown to enhance SM production in inoculated plants. Thus, our hypothesis is that bacteria may boost ash SM production, hence priming the tree's metabolism and facilitating higher levels of resilience to H. fraxineus. We tested three different ash genotypes and used Paenibacillus sp. and Pseudomonas sp. for inoculation in vitro. Total phenol (TPC), total flavonoid (TFC) and carotenoid contents were measured, as well as the chlorophyll a/b ratio and morphometric growth parameters, in a two-stage trial, whereby seedlings were inoculated with the bacteria during the first stage and with H. fraxineus during the second stage. While the tested bacteria did not positively affect the morphometric growth parameters of ash seedlings, they had a statistically significant effect on TPC, TFC, the chlorophyll a/b ratio and carotenoid content in both stages, thus confirming our hypothesis. Specifically, in ash genotype 64, both bacteria elicited an increase in carotenoid content, TPC and TFC during both stages. Additionally, Pseudomonas sp. inoculated seedlings demonstrated an increase in phenolics after infection with the fungus in both genotypes 64 and 87. Our results indicate that next to genetic selection of the most resilient planting material for ash reforestation, plant-associated bacteria could also be used to boost ash SM production.

2.
Microorganisms ; 9(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576797

RESUMO

Aspens (Populus tremula and its hybrids), economically and ecologically important fast-growing trees, are often damaged by Phellinus tremulae, a rot-causing fungus. Plant-associated bacteria can be used to increase plant growth and resistance; however, no systematic studies relating the activity of symbiotic bacteria to aspen resistance against Phellinus tremulae have been conducted so far. The present pioneer study investigated the responses of two Populus tremula and two P. tremula × P. tremuloides genotypes to in vitro inoculations with, first, either Pseudomonas sp. or Paenibacillus sp. bacteria (isolated originally from hybrid aspen tissue cultures and being most closely related to Pseudomonas oryzihabitans and Paenibacillus tundrae, respectively) and, in the subsequent stage, with Phellinus tremulae. Both morphological parameters of in vitro-grown plants and biochemical content of their leaves, including photosynthesis pigments and secondary metabolites, were analyzed. It was found that both Populus tremula × P. tremuloides genotypes, whose development in vitro was significantly damaged by Phellinus tremulae, were characterized by certain responses to the studied bacteria: decreased shoot development by both Paenibacillus sp. and Pseudomonas sp. and increased phenol content by Pseudomonas sp. In turn, these responses were lacking in both Populus tremula genotypes that showed in vitro resistance to the fungus. Moreover, these genotypes showed positive long-term growth responses to bacterial inoculation, even synergistic with the subsequent fungal inoculation. Hence, the studied bacteria were demonstrated as a potential tool for the improved in vitro propagation of fungus-resistant aspen genotypes.

3.
Physiol Plant ; 165(1): 114-122, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30367696

RESUMO

The research aim was to assess the effects of the plant hormone abscisic acid (ABA) and the growth regulator paclobutrazol (PBZ) on root system development during the in vitro culture of different birch and aspen genotypes. The studied genotypes involved two aspen (Populus tremula and Populus tremuloides × P. tremula) and two silver birch (Betula pendula) trees, with one of the birches characterized by its inability to root in vitro. For experiments, apical shoot segments were cultured on nutrient medium enriched with either ABA or PBZ. Additionally, the analysis of the endogenous hormones in shoots developed on hormone-free medium was conducted by high-performance liquid chromatography. The endogenous concentration of auxin indole-3-acetic acid was much higher in the aspens than that in the birches, while the highest concentration of ABA was found in the root-forming birch. The culturing of this birch genotype on medium enriched with ABA resulted in an increased root length and a higher number of lateral roots without any negative effect on either shoot growth or adventitious root (AR) formation, although these two processes were largely inhibited by ABA in the aspens. Meanwhile, PBZ promoted AR formation in both aspen and birch cultures but impaired secondary root formation and shoot growth in birches. These results suggest the use of ABA for the in vitro rooting of birches and PBZ for the rooting of aspens.


Assuntos
Ácido Abscísico/farmacologia , Betula/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos/métodos , Betula/citologia , Betula/efeitos dos fármacos , Betula/genética , Meios de Cultura/química , Meios de Cultura/farmacologia , Genótipo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Populus/citologia , Populus/efeitos dos fármacos , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA