Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 137(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587100

RESUMO

During development, neurons achieve a stereotyped neuron type-specific morphology, which relies on dynamic support by microtubules (MTs). An important player is the augmin complex (hereafter augmin), which binds to existing MT filaments and recruits the γ-tubulin ring complex (γ-TuRC), to form branched MTs. In cultured neurons, augmin is important for neurite formation. However, little is known about the role of augmin during neurite formation in vivo. Here, we have revisited the role of mammalian augmin in culture and then turned towards the class four Drosophila dendritic arborization (c4da) neurons. We show that MT density is maintained through augmin in cooperation with the γ-TuRC in vivo. Mutant c4da neurons show a reduction of newly emerging higher-order dendritic branches and in turn also a reduced number of their characteristic space-filling higher-order branchlets. Taken together, our data reveal a cooperative function for augmin with the γ-TuRC in forming enough MTs needed for the appropriate differentiation of morphologically complex dendrites in vivo.


Assuntos
Dendritos , Proteínas de Drosophila , Proteínas Associadas aos Microtúbulos , Microtúbulos , Animais , Microtúbulos/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Drosophila melanogaster/metabolismo , Tubulina (Proteína)/metabolismo , Drosophila/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/citologia
2.
Cells ; 10(10)2021 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-34685757

RESUMO

Neuronal dendrites receive, integrate, and process numerous inputs and therefore serve as the neuron's "antennae". Dendrites display extreme morphological diversity across different neuronal classes to match the neuron's specific functional requirements. Understanding how this structural diversity is specified is therefore important for shedding light on information processing in the healthy and diseased nervous system. Popular models for in vivo studies of dendrite differentiation are the four classes of dendritic arborization (c1da-c4da) neurons of Drosophila larvae with their class-specific dendritic morphologies. Using da neurons, a combination of live-cell imaging and computational approaches have delivered information on the distinct phases and the time course of dendrite development from embryonic stages to the fully developed dendritic tree. With these data, we can start approaching the basic logic behind differential dendrite development. A major role in the definition of neuron-type specific morphologies is played by dynamic actin-rich processes and the regulation of their properties. This review presents the differences in the growth programs leading to morphologically different dendritic trees, with a focus on the key role of actin modulatory proteins. In addition, we summarize requirements and technological progress towards the visualization and manipulation of such actin regulators in vivo.


Assuntos
Actinas/metabolismo , Dendritos/metabolismo , Drosophila/metabolismo , Animais , Diferenciação Celular
3.
Dev Biol ; 451(1): 25-34, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576627

RESUMO

Dendrites are the input compartment of the neuron, receiving and integrating incoming information. Dendritic trees are often highly complex and branched. Their branch extension and distribution are tightly correlated with their role and interactions within neuronal networks. Thus, intense research has focused on understanding the mechanisms that govern dendrite elaboration. Recent reports highlight the importance of specific lipids for these processes. In particular, glycerophospholipids and several of their interacting proteins are involved in various steps of dendrite growth, including the initiation and elongation of dendritic branches and dendritic spines. The aim of this review is to provide a general overview about which particular lipids are involved in shaping dendrite morphology during neuronal differentiation. Additionally, it summarizes recent studies, which helped to gain insights into the mechanisms by which glycerophospholipids and their associated proteins contribute to establishing correct dendritic morphologies.


Assuntos
Diferenciação Celular/fisiologia , Espinhas Dendríticas/metabolismo , Glicerofosfolipídeos/metabolismo , Animais , Humanos
4.
Sci Rep ; 8(1): 1908, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382949

RESUMO

Insulin is present all across the animal kingdom. Its proper release after feeding is of extraordinary importance for nutrient uptake, regulation of metabolism, and growth. We used Drosophila melanogaster to shed light on the processes linking dietary leucine intake to insulin secretion. The Drosophila genome encodes 8 insulin-like peptides ("Dilps"). Of these, Dilp2 is secreted after the ingestion of a leucine-containing diet. We previously demonstrated that Minidiscs, related to mammalian system-L transporters, acts as a leucine sensor within the Dilp2-secreting insulin-producing cells ("IPCs") of the brain. Here, we show that a second leucine transporter, JhI-21, of the same family is additionally necessary for proper leucine sensing in the IPCs. Using calcium imaging and ex-vivo cultured brains we show that knockdown of JhI-21 in IPCs causes malfunction of these cells: they are no longer able to sense dietary leucine or to release Dilp2 in a leucine dependent manner. JhI-21 knockdown in IPCs further causes systemic metabolic defects including defective sugar uptake and altered growth. Finally, we showed that JhI-21 and Minidiscs have no cumulative effect on Dilp2 release. Since system-L transporters are expressed by mammalian ß-cells our results could help to better understand the role of these proteins in insulin signaling.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Secretoras de Insulina/metabolismo , Larva/metabolismo , Leucina/metabolismo , Transporte Proteico/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Insulina/metabolismo , Peptídeos/metabolismo , Transdução de Sinais/fisiologia
5.
Cell Rep ; 21(12): 3346-3353, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262315

RESUMO

During differentiation, neurons require a high lipid supply for membrane formation as they elaborate complex dendritic morphologies. While glia-derived lipids support neuronal growth during development, the importance of cell-autonomous lipid production for dendrite formation has been unclear. Using Drosophila larva dendritic arborization (da) neurons, we show that dendrite expansion relies on cell-autonomous fatty acid production. The nociceptive class four (CIV) da neurons form particularly large space-filling dendrites. We show that dendrite formation in these CIVda neurons additionally requires functional sterol regulatory element binding protein (SREBP), a crucial regulator of fatty acid production. The dendrite simplification in srebp mutant CIVda neurons is accompanied by hypersensitivity of srebp mutant larvae to noxious stimuli. Taken together, our work reveals that cell-autonomous fatty acid production is required for proper dendritic development and establishes the role of SREBP in complex neurons for dendrite elaboration and function.


Assuntos
Dendritos/metabolismo , Crescimento Neuronal , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Dendritos/fisiologia , Drosophila , Ácidos Graxos/metabolismo , Nociceptividade , Proteínas de Ligação a Elemento Regulador de Esterol/genética
6.
Hum Mol Genet ; 25(24): 5365-5382, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27794539

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset, autosomal dominant familial Parkinson`s disease (PD) and variation at the LRRK2 locus contributes to the risk for idiopathic PD. LRRK2 can function as a protein kinase and mutations lead to increased kinase activity. To elucidate the pathophysiological mechanism of the R1441C mutation in the GTPase domain of LRRK2, we expressed human wild-type or R1441C LRRK2 in dopaminergic neurons of Drosophila and observe reduced locomotor activity, impaired survival and an age-dependent degeneration of dopaminergic neurons thereby creating a new PD-like model. To explore the function of LRRK2 variants in vivo, we performed mass spectrometry and quantified 3,616 proteins in the fly brain. We identify several differentially-expressed cytoskeletal, mitochondrial and synaptic vesicle proteins (SV), including synaptotagmin-1, syntaxin-1A and Rab3, in the brain of this LRRK2 fly model. In addition, a global phosphoproteome analysis reveals the enhanced phosphorylation of several SV proteins, including synaptojanin-1 (pThr1131) and the microtubule-associated protein futsch (pSer4106) in the brain of R1441C hLRRK2 flies. The direct phosphorylation of human synaptojanin-1 by R1441C hLRRK2 could further be confirmed by in vitro kinase assays. A protein-protein interaction screen in the fly brain confirms that LRRK2 robustly interacts with numerous SV proteins, including synaptojanin-1 and EndophilinA. Our proteomic, phosphoproteomic and interactome study in the Drosophila brain provides a systematic analyses of R1441C hLRRK2-induced pathobiological mechanisms in this model. We demonstrate for the first time that the R1441C mutation located within the LRRK2 GTPase domain induces the enhanced phosphorylation of SV proteins in the brain.


Assuntos
Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Proteoma/genética , Animais , Animais Geneticamente Modificados , Encéfalo/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/biossíntese , Mutação , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Monoéster Fosfórico Hidrolases/biossíntese , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Mapas de Interação de Proteínas , Vesículas Sinápticas/genética , Sinaptotagmina I/biossíntese , Sinaptotagmina I/genética , Sintaxina 1/biossíntese , Sintaxina 1/genética , Proteínas rab3 de Ligação ao GTP/biossíntese , Proteínas rab3 de Ligação ao GTP/genética
7.
Cell Rep ; 17(1): 137-148, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27681427

RESUMO

Dietary leucine has been suspected to play an important role in insulin release, a hormone that controls satiety and metabolism. The mechanism by which insulin-producing cells (IPCs) sense leucine and regulate insulin secretion is still poorly understood. In Drosophila, insulin-like peptides (DILP2 and DILP5) are produced by brain IPCs and are released in the hemolymph after leucine ingestion. Using Ca(2+)-imaging and ex vivo cultured larval brains, we demonstrate that IPCs can directly sense extracellular leucine levels via minidiscs (MND), a leucine transporter. MND knockdown in IPCs abolished leucine-dependent changes, including loss of DILP2 and DILP5 in IPC bodies, consistent with the idea that MND is necessary for leucine-dependent DILP release. This, in turn, leads to a strong increase in hemolymph sugar levels and reduced growth. GDH knockdown in IPCs also reduced leucine-dependent DILP release, suggesting that nutrient sensing is coupled to the glutamate dehydrogenase pathway.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Secretoras de Insulina/metabolismo , Insulinas/metabolismo , Leucina/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Encéfalo/citologia , Cálcio/metabolismo , Drosophila melanogaster/citologia , Regulação da Expressão Gênica , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Hemolinfa/metabolismo , Células Secretoras de Insulina/citologia , Insulinas/genética , Larva/citologia , Larva/metabolismo , Leucina/administração & dosagem , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais
8.
Sci Rep ; 6: 19692, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26805723

RESUMO

Changes in synaptic physiology underlie neuronal network plasticity and behavioral phenomena, which are adjusted during development. The Drosophila larval glutamatergic neuromuscular junction (NMJ) represents a powerful synaptic model to investigate factors impacting these processes. Amino acids such as glutamate have been shown to regulate Drosophila NMJ physiology by modulating the clustering of postsynaptic glutamate receptors and thereby regulating the strength of signal transmission from the motor neuron to the muscle cell. To identify amino acid transporters impacting glutmatergic signal transmission, we used Evolutionary Rate Covariation (ERC), a recently developed bioinformatic tool. Our screen identified ten proteins co-evolving with NMJ glutamate receptors. We selected one candidate transporter, the SLC7 (Solute Carrier) transporter family member JhI-21 (Juvenile hormone Inducible-21), which is expressed in Drosophila larval motor neurons. We show that JhI-21 suppresses postsynaptic muscle glutamate receptor abundance, and that JhI-21 expression in motor neurons regulates larval crawling behavior in a developmental stage-specific manner.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Atividade Motora , Junção Neuromuscular/fisiologia , Receptores de Glutamato/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animais , Evolução Biológica , Proteínas de Drosophila/genética , Potenciais Pós-Sinápticos Excitadores , Larva , Neurônios Motores/metabolismo , Mutação , Terminações Pré-Sinápticas/metabolismo , Transdução de Sinais , Transmissão Sináptica
9.
PLoS One ; 10(8): e0135353, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26308084

RESUMO

Polyunsaturated fatty acids (PUFAs) are essential nutrients for animals and necessary for the normal functioning of the nervous system. A lack of PUFAs can result from the consumption of a deficient diet or genetic factors, which impact PUFA uptake and metabolism. Both can cause synaptic dysfunction, which is associated with numerous disorders. However, there is a knowledge gap linking these neuronal dysfunctions and their underlying molecular mechanisms. Because of its genetic manipulability and its easy, fast, and cheap breeding, Drosophila melanogaster has emerged as an excellent model organism for genetic screens, helping to identify the genetic bases of such events. As a first step towards the understanding of PUFA implications in Drosophila synaptic physiology we designed a breeding medium containing only very low amounts of PUFAs. We then used the fly's visual system, a well-established model for studying signal transmission and neurological disorders, to measure the effects of a PUFA deficiency on synaptic function. Using both visual performance and eye electrophysiology, we found that PUFA deficiency strongly affected synaptic transmission in the fly's visual system. These defects were rescued by diets containing omega-3 or omega-6 PUFAs alone or in combination. In summary, manipulating PUFA contents in the fly's diet was powerful to investigate the role of these nutrients on the fly´s visual synaptic function. This study aims at showing how the first visual synapse of Drosophila can serve as a simple model to study the effects of PUFAs on synapse function. A similar approach could be further used to screen for genetic factors underlying the molecular mechanisms of synaptic dysfunctions associated with altered PUFA levels.


Assuntos
Gorduras na Dieta/farmacologia , Drosophila melanogaster/fisiologia , Ácidos Graxos Insaturados/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Percepção Visual/efeitos dos fármacos , Percepção Visual/fisiologia , Animais , Gorduras na Dieta/metabolismo , Relação Dose-Resposta a Droga , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Ácidos Graxos Insaturados/metabolismo , Transmissão Sináptica/efeitos dos fármacos
10.
Front Physiol ; 4: 72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23576993

RESUMO

Odors are key sensory signals for social communication and food search in animals including insects. Drosophila melanogaster, is a powerful neurogenetic model commonly used to reveal molecular and cellular mechanisms involved in odorant detection. Males use olfaction together with other sensory modalities to find their mates. Here, we review known olfactory signals, their related olfactory receptors, and the corresponding neuronal architecture impacting courtship. OR67d receptor detects 11-cis-Vaccenyl Acetate (cVA), a male specific pheromone transferred to the female during copulation. Transferred cVA is able to reduce female attractiveness for other males after mating, and is also suspected to decrease male-male courtship. cVA can also serve as an aggregation signal, maybe through another OR. OR47b was shown to be activated by fly odors, and to enhance courtship depending on taste pheromones. IR84a detects phenylacetic acid (PAA) and phenylacetaldehyde (PA). These two odors are not pheromones produced by flies, but are present in various fly food sources. PAA enhances male courtship, acting as a food aphrodisiac. Drosophila males have thus developed complementary olfactory strategies to help them to select their mates.

11.
J Comp Neurol ; 521(6): 1207-24, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23124681

RESUMO

Drosophila mutants black and ebony show pigmentation defects in the adult cuticle, which disclose their cooperative activity in ß-alanyl-dopamine formation. In visual signal transduction, Ebony conjugates ß-alanine to histamine, forming ß-alanyl-histamine or carcinine. Mutation of ebony disrupts signal transduction and reveals an electroretinogram (ERG) phenotype. In contrast to the corresponding cuticle phenotype of black and ebony, there is no ERG phenotype observed when black expression is disrupted. This discrepancy calls into question the longstanding assumption of Black and Ebony interaction. The purpose of this study was to investigate the role of Black and Ebony in fly optic lobes. We excluded a presynaptic histamine uptake pathway and confirmed histamine recycling via carcinine formation in glia. ß-Alanine supply for this pathway is independent of enzymatic synthesis by Black and ß-alanine synthase Pyd3. Two versions of Black are expressed in vivo. Black is a specific aspartate decarboxylase with no activity on glutamate. RNA in situ hybridization and anti-Black antisera localized Black expression in the head. Immunolabeling revealed expression in lamina glia, in large medulla glia, in glia of the ocellar ganglion, and in astrocyte-like glia below the ocellar ganglion. In these glia types, Black expression is strictly accompanied by Ebony expression. Activity, localization, and strict coexpression with Ebony strongly indicate a specific mode of functional interaction that, however, evades ERG detection.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Proteínas de Drosophila/biossíntese , Eletrorretinografia , Regulação da Expressão Gênica , Glutamato Descarboxilase/biossíntese , Lobo Óptico de Animais não Mamíferos/metabolismo , Visão Ocular/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Eletrorretinografia/métodos , Glutamato Descarboxilase/genética , Visão Ocular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...