Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8010): 80-85, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693414

RESUMO

Building a fault-tolerant quantum computer will require vast numbers of physical qubits. For qubit technologies based on solid-state electronic devices1-3, integrating millions of qubits in a single processor will require device fabrication to reach a scale comparable to that of the modern complementary metal-oxide-semiconductor (CMOS) industry. Equally important, the scale of cryogenic device testing must keep pace to enable efficient device screening and to improve statistical metrics such as qubit yield and voltage variation. Spin qubits1,4,5 based on electrons in Si have shown impressive control fidelities6-9 but have historically been challenged by yield and process variation10-12. Here we present a testing process using a cryogenic 300-mm wafer prober13 to collect high-volume data on the performance of hundreds of industry-manufactured spin qubit devices at 1.6 K. This testing method provides fast feedback to enable optimization of the CMOS-compatible fabrication process, leading to high yield and low process variation. Using this system, we automate measurements of the operating point of spin qubits and investigate the transitions of single electrons across full wafers. We analyse the random variation in single-electron operating voltages and find that the optimized fabrication process leads to low levels of disorder at the 300-mm scale. Together, these results demonstrate the advances that can be achieved through the application of CMOS-industry techniques to the fabrication and measurement of spin qubit devices.

2.
J Chem Phys ; 157(7): 074703, 2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35987573

RESUMO

Many techniques to fabricate complex nanostructures and quantum emitting defects in low dimensional materials for quantum information technologies rely on the patterning capabilities of focused ion beam (FIB) systems. In particular, the ability to pattern arrays of bright and stable room temperature single-photon emitters (SPEs) in 2D wide-bandgap insulator hexagonal boron nitride (hBN) via high-energy heavy-ion FIB allows for direct placement of SPEs without structured substrates or polymer-reliant lithography steps. However, the process parameters needed to create hBN SPEs with this technique are dependent on the growth method of the material chosen. Moreover, morphological damage induced by high-energy heavy-ion exposure may further influence the successful creation of SPEs. In this work, we perform atomic force microscopy to characterize the surface morphology of hBN regions patterned by Ga+ FIB to create SPEs at a range of ion doses and find that material swelling, and not milling as expected, is most strongly and positively correlated with the onset of non-zero SPE yields. Furthermore, we simulate vacancy concentration profiles at each of the tested doses and propose a qualitative model to elucidate how Ga+ FIB patterning creates isolated SPEs that is consistent with observed optical and morphological characteristics and is dependent on the consideration of void nucleation and growth from vacancy clusters. Our results provide novel insight into the formation of hBN SPEs created by high-energy heavy-ion milling that can be leveraged for monolithic hBN photonic devices and could be applied to a wide range of low-dimensional solid-state SPE hosts.

5.
Anal Chem ; 92(9): 6654-6666, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32252524

RESUMO

DJ-1, a 20.7 kDa protein, is overexpressed in people who have bladder cancer (BC). Its elevated concentration in urine allows it to serve as a marker for BC. However, no biosensor for the detection of DJ-1 has been demonstrated. Here, we describe a virus bioresistor (VBR) capable of detecting DJ-1 in urine at a concentration of 10 pM in 1 min. The VBR consists of a pair of millimeter-scale gold electrodes that measure the electrical impedance of an ultrathin (≈ 150-200 nm), two-layer polymeric channel. The top layer of this channel (90-105 nm in thickness) consists of an electrodeposited virus-PEDOT (PEDOT is poly(3,4-ethylenedioxythiophene)) composite containing embedded M13 virus particles that are engineered to recognize and bind to the target protein of interest, DJ-1. The bottom layer consists of spin-coated PEDOT-PSS (poly(styrenesulfonate)). Together, these two layers constitute a current divider. We demonstrate here that reducing the thickness of the bottom PEDOT-PSS layer increases its resistance and concentrates the resistance drop of the channel in the top virus-PEDOT layer, thereby increasing the sensitivity of the VBR and enabling the detection of DJ-1. Large signal amplitudes coupled with the inherent simplicity of the VBR sensor design result in high signal-to-noise (S/N > 100) and excellent sensor-to-sensor reproducibility characterized by coefficients of variation in the range of 3-7% across the DJ-1 binding curve down to a concentration of 30 pM, near the 10 pM limit of detection (LOD), encompassing four orders of magnitude in concentration.


Assuntos
Bacteriófago M13/química , Biomarcadores Tumorais/urina , Técnicas Biossensoriais , Proteína Desglicase DJ-1/urina , Neoplasias da Bexiga Urinária/urina , Humanos , Fatores de Tempo
6.
ACS Nano ; 14(2): 1243-1295, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31895532

RESUMO

Although Li-ion batteries have emerged as the battery of choice for electric vehicles and large-scale smart grids, significant research efforts are devoted to identifying materials that offer higher energy density, longer cycle life, lower cost, and/or improved safety compared to those of conventional Li-ion batteries based on intercalation electrodes. By moving beyond intercalation chemistry, gravimetric capacities that are 2-5 times higher than that of conventional intercalation materials (e.g., LiCoO2 and graphite) can be achieved. The transition to higher-capacity electrode materials in commercial applications is complicated by several factors. This Review highlights the developments of electrode materials and characterization tools for rechargeable lithium-ion batteries, with a focus on the structural and electrochemical degradation mechanisms that plague these systems.

7.
Phys Rev E ; 100(2-1): 022707, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574723

RESUMO

We conduct an in-depth analysis of the electroclinic effect in chiral, ferroelectric liquid crystal systems that have a first-order smectic-A^{*}-smectic-C^{*} (Sm-A^{*}-Sm-C^{*}) transition, and show that such systems can be either type I or type II. In temperature-field parameter space type-I systems exhibit a macroscopically achiral (in which the Sm-C_{M}^{*} helical superstructure is expelled) low-tilt (LT) Sm-C_{U}^{*}-high-tilt (HT) Sm-C_{U}^{*} critical point, which terminates a LT Sm-C_{U}^{*}-HT Sm-^{*}C_{U} first-order boundary. Notationally, Sm-C_{M}^{*} or Sm-C_{U}^{*} denotes the Sm-C^{*} phase with or without a modulated superstructure. This boundary extends to an achiral-chiral triple point at which the macroscopically achiral LT Sm-C_{U}^{*} and HT Sm-C_{U}^{*} phases coexist along with the chiral Sm-C_{M}^{*} phase. In type-II systems the critical point, triple point, and first-order boundary are replaced by a Sm-C_{M}^{*} region, sandwiched between LT and HT Sm-C_{U}^{*} phases, at low and high fields, respectively. Correspondingly, as the field is ramped up, the type-II system will display a reentrant Sm-C_{U}^{*}-Sm-C_{M}^{*}-Sm-C_{U}^{*} phase sequence. Moreover, discontinuity in the tilt of the optical axis at each of the two phase transitions means the type-II system is tristable, in contrast to the bistable nature of the LT Sm-C_{U}^{*}-HT Sm-C_{U}^{*} transition in type-I systems. Whether the system is type I or type II is determined by the ratio of two length scales, one of which is the zero-field Sm-C^{*} helical pitch. The other length scale depends on the size of the discontinuity (and thus the latent heat) at the zero-field first-order Sm-A^{*}-Sm-C^{*} transition. We note that this type-I vs type-II behavior in this ferroelectric smectic is the Ising universality class analog of type-I vs type-II behavior in XY universality class systems. Lastly, we make a complete mapping of the phase boundaries in all regions of temperature-field-enantiomeric-excess parameter space (not just near the critical point) and show that various interesting features are possible, including a multicritical point, tricritical points, and a doubly reentrant Sm-C_{U}^{*}-Sm-C_{M}^{*}-Sm-C_{U}^{*}-Sm-C_{M}^{*} phase sequence.

8.
Nano Lett ; 19(3): 2121-2127, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30768282

RESUMO

Quantum emitters (QEs) in 2D hexagonal boron nitride (hBN) are extremely bright and are stable at high temperature and under harsh chemical conditions. Because they reside within an atomically thin 2D material, these QEs have a unique potential to couple strongly to hybrid optoelectromechanical and quantum devices. However, this potential for coupling has been underexplored because of challenges in nanofabrication and patterning of hBN QEs. Motivated by recent studies showing that QEs in hBN tend to form at edges, we use a focused ion beam (FIB) to mill an array of patterned holes into hBN. Using optical confocal microscopy, we find arrays of bright, localized photoluminescence that match the geometry of the patterned holes. Furthermore, second-order photon correlation measurements on these bright spots reveal that they contain single and multiple QEs. By optimizing the FIB parameters, we create patterned single QEs with a yield of 31%, a value close to Poissonian limit. Using atomic force microscopy to study the morphology near emission sites, we find that single QE yield is highest with smoothly milled holes on unwrinkled hBN. This technique dramatically broadens the utility and convenience of hBN QEs and achieves a vital step toward the facile integration of the QEs into large-scale photonic, plasmonic, nanomechanical, or optoelectronic devices.

9.
Nano Lett ; 18(4): 2683-2688, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29583012

RESUMO

Quantum emitters in two-dimensional hexagonal boron nitride (hBN) are attractive for a variety of quantum and photonic technologies because they combine ultra-bright, room-temperature single-photon emission with an atomically thin crystal. However, the emitter's prominence is hindered by large, strain-induced wavelength shifts. We report the discovery of a visible-wavelength, single-photon emitter (SPE) in a zero-dimensional boron nitride allotrope (the boron nitride nanococoon, BNNC) that retains the excellent optical characteristics of few-layer hBN while possessing an emission line variation that is lower by a factor of 5 than the hBN emitter. We determined the emission source to be the nanometer-size BNNC through the cross-correlation of optical confocal microscopy with high-resolution scanning and transmission electron microscopy. Altogether, this discovery enlivens color centers in BN materials and, because of the BN nanococoon's size, opens new and exciting opportunities in nanophotonics, quantum information, biological imaging, and nanoscale sensing.

10.
Inorg Chem ; 55(2): 555-7, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26692111

RESUMO

A series of pyridinediimine (PDI) iron complexes that contain a pendant 15-crown-5 located in the secondary coordination sphere were synthesized and characterized. The complex Fe((15c5)PDI)(CO)2 (2) was shown in both the solid state and solution to encapsulate redox-inactive metal ions. Modest shifts in the reduction potential of the metal-ligand scaffold were observed upon encapsulation of either Na(+) or Li(+).


Assuntos
Iminas/química , Compostos de Ferro/química , Metais/química , Piridinas/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA