Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 251: 112850, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277961

RESUMO

The effect of UV radiation from three different sources on chitosan (CS) films containing the addition of 10% by weight of cannabis oil was investigated. Cannabis oil (CBD) alone exposed to UV is unstable, but its photostability significantly increases in the chitosan matrix. The course of photochemical reactions, studied by FTIR spectroscopy, is slow and inefficient in chitosan with CBD, even under high-energy UV sources. The research also included chitosan films with CBD cross-linked with dialdehyde starch (DAS). Using AFM microscopy and contact angle measurements, the morphology and surface properties of prepared chitosan films with CBD were investigated, respectively. It was found that CBD embedded in CS is characterized by the best photostability under the influence of an LED emitting long-wave radiation. Using a monochromatic and polychromatic UV lamp (HPK and UV-C) emitting high-energy radiation, gradual degradation accompanied by oxidation was observed, both in the CS chains and in the CBD additive. Additionally, changes in surface properties are observed during UV irradiation. It was concluded that CS protects CBD against photodegradation, and a further improvement in photochemical stability is achieved after system cross-linking with DAS.


Assuntos
Cannabis , Quitosana , Quitosana/química , Raios Ultravioleta , Propriedades de Superfície , Microscopia Eletrônica de Varredura
2.
J Phys Chem B ; 128(3): 781-794, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38215049

RESUMO

Magnetite nanoparticles (MNPs) are attractive nanomaterials for applications in magnetic resonance imaging, targeted drug delivery, and anticancer therapy due to their unique properties such as nontoxicity, wide chemical affinity, and intrinsic superparamagnetism. Their functionalization with polymers such as chitosan or poly(vinyl alcohol) (PVA) can not only improve their biocompatibility and biodegradability but it also plays an important role in their interactions with biological cells. In this work, the effect of the functionalization of MNPs with chitosan, PVA, and their blend on model cell membranes formed from 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) using a Langmuir technique was studied. The studies performed showed that the type of biocompatible polymer in the MNP shell plays a crucial role in the effectiveness of its adsorption process into the model cell membrane. Modification of MNPs with chitosan facilitates significantly more effective adsorption than coating them with PVA or with a chitosan and PVA blend. The presence of all the investigated MNPs in the DPPC monolayer at low concentrations does not affect its thermodynamic state, fluidity, or morphology, which is promising in terms of their biocompatibility. On the other hand, their high concentration (molar fraction above ≈0.05) exerts a disruptive effect on the model cell membrane and results in their aggregation, leading probably to the loss of their superparamagnetic properties essential for nanomedicine.


Assuntos
Quitosana , Nanopartículas de Magnetita , Polímeros/química , Quitosana/química , Nanopartículas de Magnetita/química , Sistemas de Liberação de Medicamentos , Membrana Celular
3.
Nanomaterials (Basel) ; 13(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836288

RESUMO

Many purine derivatives are active pharmaceutical ingredients of significant importance in the therapy of autoimmune diseases, cancers, and viral infections. In many cases, their medical use is limited due to unfavorable physicochemical and pharmacokinetic properties. These problems can be overcome by the preparation of the prodrugs of purines or by combining these compounds with nanoparticles. Herein, we aim to review the scientific progress and perspectives for polymer-based nanoparticles as drug delivery systems for purines. Polymeric nanoparticles turned out to have the potential to augment antiviral and antiproliferative effects of purine derivatives by specific binding to receptors (ASGR1-liver, macrophage mannose receptor), increase in drug retention (in eye, intestines, and vagina), and permeation (intranasal to brain delivery, PEPT1 transport of acyclovir). The most significant achievements of polymer-based nanoparticles as drug delivery systems for purines were found for tenofovir disoproxil in protection against HIV, for acyclovir against HSV, for 6-mercaptopurine in prolongation of mice ALL model life, as well as for 6-thioguanine for increased efficacy of adoptively transferred T cells. Moreover, nanocarriers were able to diminish the toxic effects of acyclovir, didanosine, cladribine, tenofovir, 6-mercaptopurine, and 6-thioguanine.

4.
Int J Biol Macromol ; 253(Pt 3): 126933, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37722631

RESUMO

Wound healing is a complex process; therefore, new dressings are frequently required to facilitate it. In this study, porous bacterial levan-based sponges containing cannabis oil (Lev@CBDs) were prepared and fully characterized. The sponges exhibited a suitable swelling ratio, proper water vapor transmission rate, sufficient thermal stability, desired mechanical properties, and good antioxidant and anti-inflammatory properties. The obtained Lev@CBD materials were evaluated in terms of their interaction with proteins, human serum albumin and fibrinogen, of which fibrinogen revealed the highest binding effect. Moreover, the obtained biomaterials exhibited antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, as well as being non-hemolytic material as indicated by hemolysis tests. Furthermore, the sponges were non-toxic and compatible with L929 mouse fibroblasts and HDF cells. Most significantly, the levan sponge with the highest content of cannabis oil, in comparison to others, retained its non-hemolytic, anti-inflammatory, and antimicrobial properties after prolonged storage in a climate chamber at a constant temperature and relative humidity. The designed sponges have conclusively proven their beneficial physicochemical properties and, at the preliminary stage, biocompatibility as well, and therefore can be considered a promising material for wound dressings in future in vivo applications.


Assuntos
Quitosana , Camundongos , Animais , Humanos , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Fibrinogênio , Anti-Inflamatórios
5.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446300

RESUMO

Clopidogrel is a chiral compound widely used as an antiplatelet medication that lowers the risk of blood clots, strokes, and heart attacks. The main aim of the study presented herein was to obtain (S)-clopidogrel, which is commercially available in treatments, via the kinetic resolution of racemic clopidogrel carboxylic acid with the use of lipase from Candida rugosa and a two-phase reaction medium containing an ionic liquid. For this purpose, the enantioselective biotransformation of clopidogrel carboxylic acid and chiral chromatographic separation with the use of a UPLC-MS/MS system were optimized. The best kinetic resolution parameters were obtained by using a catalytic system containing lipase from Candida rugosa OF as a biocatalyst, cyclohexane and [EMIM][BF4] as a two-phase reaction medium, and methanol as an acyl acceptor. The enantiomeric excess of the product was eep = 94.21% ± 1.07 and the conversion was c = 49.60% ± 0.57%, whereas the enantioselectivity was E = 113.40 ± 1.29. The performed study proved the possibility of obtaining (S)-clopidogrel with the use of lipase as a biocatalyst and a two-phase reaction medium containing an ionic liquid, which is in parallel with green chemistry methodology and does not require environmentally harmful conditions.


Assuntos
Líquidos Iônicos , Clopidogrel , Cromatografia Líquida , Espectrometria de Massas em Tandem , Lipase/metabolismo , Estereoisomerismo
6.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675294

RESUMO

The work is devoted to preparing and characterizing the properties of photosensitive composites, based on chitosan proposed for photodynamic therapy. Chitosan films with a 5% addition of two BODIPY dyes were prepared by solution casting. These dyes are dipyrromethene boron derivatives with N-alkyl phthalimide substituent, differing in the presence of iodine atoms in positions 2 and 6 of the BODIPY core. The spectral properties of the obtained materials have been studied by infrared and UV-vis absorption spectroscopy and fluorescence, both in solutions and in a solid state. Surface properties were investigated using the contact angle measurement. The morphology of the sample has been characterized by Scanning Electron and Atomic Force Microscopy. Particular attention was paid to studying the protein absorption and kinetics of the dye release from the chitosan. Adding BODIPY to the chitosan matrix leads to a slight increase in hydrophilicity, higher structure heterogeneity, and roughness, than pure chitosan. The presence of iodine atoms in the BODIPY structure caused the bathochromic effect, but the emission quantum yield decreased in the composites. It has been found that BODIPY-doped chitosan interacts better with human serum albumin and acidic α-glycoprotein than unmodified chitosan. The release rate of dyes from films immersed in methanol depends on the iodine present in the structure.


Assuntos
Quitosana , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Boro/química
7.
Sci Rep ; 12(1): 18658, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333591

RESUMO

This study focuses on obtaining and characterizing novel chitosan-based biomaterials containing cannabis oil to potentially promote wound healing. The primary active substance in cannabis oil is the non-psychoactive cannabidiol, which has many beneficial properties. In this study, three chitosan-based films containing different concentrations of cannabis oil were prepared. As the amount of oil increased, the obtained biomaterials became rougher as tested by atomic force microscopy. Such rough surfaces promote protein adsorption, confirmed by experiments assessing the interaction between human albumin with the obtained materials. Increased oil concentration also improved the films' mechanical parameters, swelling capacity, and hydrophilic properties, which were checked by the wetting angle measurement. On the other hand, higher oil content resulted in decreased water vapour permeability, which is essential in wound dressing. Furthermore, the prepared films were subjected to an acute toxicity test using a Microtox. Significantly, the film's increased cannabis oil content enhanced the antimicrobial effect against A. fischeri for films in direct contact with bacteria. More importantly, cell culture studies revealed that the obtained materials are biocompatible and, therefore, they might be potential candidates for application in wound dressing materials.


Assuntos
Cannabis , Quitosana , Humanos , Bandagens/microbiologia , Cicatrização , Materiais Biocompatíveis/farmacologia
8.
Materials (Basel) ; 15(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36295343

RESUMO

Magnesium(II) sulfanyl porphyrazine with peripheral morpholinethoxy substituents was embedded on the surface of titanium(IV) dioxide nanoparticles. The obtained nanocomposites were characterized with the use of particle size and distribution (NTA analysis), electron microscopy (SEM), thermal analysis (TGA), FTIR-ATR spectroscopy, and X-ray powder diffraction (XRD). The measured particle size of the obtained material was 327.4 ± 15.5 nm. Analysis with XRD showed no visible changes in the crystallinity of the material after deposition of porphyrazine on the TiO2 surface. However, SEM images revealed noticeable changes in the morphology of the obtained hybrid material: higher aggregation and less ordered structure of the aggregates. The TGA analysis revealed the lost 3.6% (0.4 mg) of the mass of obtained material in the range 250-550 °C. In the FTIR-ATR analysis, C-H stretching vibratins in the range of 3000-2800 cm-1, originating from porphyrazine moieties, were detected. The photocatalytic applicability of the nanomaterial was assessed in photodegradation studies of methylene blue and bisphenol A as reference environmental pollutants. In addition, the photocatalytic degradation of carbamazepine with porphyrazine/TiO2 hybrids as photocatalysts was studied, accompanied by an HPLC chromatography assessment of photodegradation. In total, 43% of the initial concentration was achieved in the case of bisphenol A, after 4 h of irradiation, whereas 57% was achieved in the case of carbamazepine. In each photodegradation reaction, the activity of the obtained photocatalytic nanomaterial was proved with almost linear degradation. The photodegradation reaction rate constants were calculated, and revealed 5.75 × 10-5 s-1 for bisphenol A and 5.66 × 10-5 s-1 for carbamazepine.

9.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077096

RESUMO

In this study, thin chitosan-gelatin biofilms cross-linked with dialdehyde cellulose nanocrystals for dressing materials were received. Two types of dialdehyde cellulose nanocrystals from fiber (DNCL) and microcrystalline cellulose (DAMC) were obtained by periodate oxidation. An ATR-FTIR analysis confirmed the selective oxidation of cellulose nanocrystals with the creation of a carbonyl group at 1724 cm-1. A higher degree of cross-linking was obtained in chitosan-gelatin biofilms with DNCL than with DAMC. An increasing amount of added cross-linkers resulted in a decrease in the apparent density value. The chitosan-gelatin biofilms cross-linked with DNCL exhibited a higher value of roughness parameters and antioxidant activity compared with materials cross-linked with DAMC. The cross-linking process improved the oxygen permeability and anti-inflammatory properties of both measurement series. Two samples cross-linked with DNCL achieved an ideal water vapor transition rate for wound dressings, CS-Gel with 10% and 15% addition of DNCL-8.60 and 9.60 mg/cm2/h, respectively. The swelling ability and interaction with human serum albumin (HSA) were improved for biofilms cross-linked with DAMC and DNCL. Significantly, the films cross-linked with DAMC were characterized by lower toxicity. These results confirmed that chitosan-gelatin biofilms cross-linked with DNCL and DAMC had improved properties for possible use in wound dressings.


Assuntos
Quitosana , Nanopartículas , Bandagens , Celulose/análogos & derivados , Celulose/química , Quitosana/química , Gelatina/química , Humanos
10.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886996

RESUMO

In recent years, new cross-linkers from renewable resources have been sought to replace toxic synthetic compounds of this type. One of the most popular synthetic cross-linking agents used for biomedical applications is glutaraldehyde. However, the unreacted cross-linker can be released from the materials and cause cytotoxic effects. In the present work, dialdehyde starch nanocrystals (NDASs) were obtained from this polysaccharide nanocrystal form as an alternative to commonly used cross-linking agents. Then, 5-15% NDASs were used for chemical cross-linking of native chitosan (CS), gelatin (Gel), and a mixture of these two biopolymers (CS-Gel) via Schiff base reaction. The obtained materials, forming thin films, were characterized by ATR-FTIR, SEM, and XRD analysis. Thermal and mechanical properties were determined by TGA analysis and tensile testing. Moreover, all cross-linked biopolymers were also characterized by hydrophilic character, swelling ability, and protein absorption. The toxicity of obtained materials was tested using the Microtox test. Dialdehyde starch nanocrystals appear as a beneficial plant-derived cross-linking agent that allows obtaining cross-linked biopolymer materials with properties desirable for biomedical applications.


Assuntos
Proteínas Sanguíneas , Quitosana , Reagentes de Ligações Cruzadas , Gelatina , Nanopartículas , Amido , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Quitosana/química , Quitosana/metabolismo , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Gelatina/química , Gelatina/metabolismo , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Amido/análogos & derivados , Amido/química , Amido/metabolismo
11.
Materials (Basel) ; 15(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35744240

RESUMO

Wound healing and skin tissue regeneration remain the most critical challenges faced by medical professionals. Titanium(IV) oxide-based materials were proposed as components of pharmaceutical formulations for the treatment of difficult-to-heal wounds and unsightly scarring. A gallic acid-functionalized TiO2 nanomaterial (TiO2-GA) was obtained using the self-assembly technique and characterized using the following methods: scanning electron microscopy (SEM), transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), X-ray powder diffraction (XRPD), infrared spectroscopy (IR), Raman spectroscopy and thermogravimetry (TG). Additionally, physicochemical and biological tests (DPPH assay, Microtox® acute toxicity test, MTT assay) were performed to assess antioxidant properties as well as to determine the cytotoxicity of the novel material against eukaryotic (MRC-5 pd19 fibroblasts) and prokaryotic (Staphylococcus aureus, Escherichia coli, Candida albicans, Aliivibrio fischeri) cells. To determine the photocytotoxicity of the material, specific tests were carried out with and without exposure to visible light lamps (425 nm). Following the results, the TiO2-GA material could be considered an additive to dressings and rinsing suspensions for the treatment of difficult-to-heal wounds that are at risk of bacterial infections.

12.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269605

RESUMO

Levan, as a biocompatible and renewable biopolymer with anticancer properties, is a promising candidate for a wide range of applications in various fields of industry. However, in the literature, there is a lack of information about its behavior under the influence of UV irradiation, which may limit its potential application, including medical science. Therefore, this study describes the effects of irradiation on the structural properties of levan. This type of fructan was subjected to stability tests under radiation conditions using LED and polychromatic lamps. The results showed that the photodegradation of levan irradiated with a polychromatic light occurs faster and more efficiently than the photodegradation of levan irradiated with an LED lamp. Furthermore, AFM analysis showed that the surface became smoother after irradiation, as evidenced by decreasing values of roughness parameters. Moreover, UV irradiation causes the decrease of total surface free energy and both its components in levan; however, more significant changes occur during irradiation of the sample with a polychromatic lamp.


Assuntos
Frutanos , Biopolímeros/química , Frutanos/química
13.
Materials (Basel) ; 15(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35161001

RESUMO

Inorganic aluminum or iron salts supported with synthetic polymers are commonly used to eradicate colloidal particles from water in coagulation and flocculation processes. Nevertheless, these agents have several disadvantages, such as large volumes of sludge produced or environmental toxicity. Recently biodegradable polymers have been suggested as eco-friendly flocculants for water treatment. This study aimed to investigate the possibilities of using starch and chitosan and their oxidized derivatives as flocculants for filter backwash water treatment. Dialdehyde starch (DST) and dialdehyde chitosan (DCT) were synthesized by periodate oxidization of natural starch from corn and low molecular weight chitosan. The obtained materials have been characterized with scanning electron microscopy (SEM), ATR-FTIR spectroscopy, and thermogravimetric analysis (TGA). Furthermore, we studied the flocculation properties of polysaccharide flocculants in a series of jar tests. The effectiveness of chitosan and starched-based flocculants was compared to synthetic polymers commonly used to treat iron ions-rich filter backwash water. The environmental aspects of these chemicals, particularly the biodegradability of post-flocculation residues, were also addressed. It was found that oxidized starch and chitosan derivatives can be used as ecological flocculating materials to treat potable water or sludge.

14.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201648

RESUMO

The present study is devoted to the combined experimental and theoretical description of the photophysical properties and photodegradation of the new boron-dipyrromethene (BODIPY) derivatives obtained recently for biomedical applications, such as bacteria photoinactivation (Piskorz et al., Dyes and Pigments 2020, 178, 108322). Absorption and emission spectra for a wide group of solvents of different properties for the analyzed BODIPY derivatives were investigated in order to verify their suitability for photopharmacological applications. Additionally, the photostability of the analyzed systems were thoroughly determined. The exposition to the UV light was found first to cause the decrease in the most intensive absorption band and the appearance of the hypsochromically shifted band of similar intensity. On the basis of the chromatographic and computational study, this effect was assigned to the detachment of the iodine atoms from the BODIPY core. After longer exposition to UV light, photodegradation occurred, leading to the disappearance of the intensive absorption bands and the emergence of small intensity signals in the strongly blue-shifted range of the spectrum. Since the most intensive bands in original dyes are ascribed to the molecular core bearing the BF2 moiety, this result can be attributed to the significant cleavage of the BF2 ring. In order to fully characterize the obtained molecules, the comprehensive computational chemistry study was performed. The influence of the intermolecular interactions for their absorption in solution was analyzed. The theoretical data entirely support the experimental outcomes.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Teoria da Densidade Funcional , Iodo/química , Conformação Molecular , Fotólise , Solventes/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
15.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073072

RESUMO

Understanding the mechanism of interactions between magnetite nanoparticles and phospholipids that form cellular membranes at the molecular level is of crucial importance for their safe and effective application in medicine (e.g. magnetic resonance imaging, targeted drug delivery, and hyperthermia-based anticancer therapy). In these interactions, their surface coating plays a crucial role because even a small modification to its structure can cause significant changes to the behaviour of the magnetite nanoparticles that come in contact with a biomembrane. In this work, the influence of the magnetite nanoparticles functionalized with native and aminated starch on the thermodynamics, morphology, and dilatational elasticity of the model cell membranes was studied. The model cell membranes constituted the Langmuir monolayers formed at the air-water interface of dipalmitoylphosphatidylcholine (DPPC). The surface of the aminated starch-coated nanoparticles was enriched in highly reactive amino groups, which allowed more effective binding of drugs and biomolecules suitable for specific nano-bio applications. The studies indicated that the presence of these groups also reduced to some extent the disruptive effect of the magnetite nanoparticles on the model membranes and improved their adsorption.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Nanopartículas de Magnetita/química , Membranas Artificiais , Amido/química , Aminação , Propriedades de Superfície , Termodinâmica
16.
Materials (Basel) ; 14(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801523

RESUMO

Chitosan was used as a protective matrix for the photosensitive dye-squaraine (2,4-bis[4-(dimethylamino)phenyl]cyclobutane-1,3-diol). The physicochemical properties of the obtained systems, both in solution and in a solid-state, were investigated. However, it was found that diluted chitosan solutions with a few percent additions of dye show an intense fluorescence, which is suppressed in the solid-state. This is related to the morphology of the heterogeneous modified chitosan films. The important advantage of using a biopolymer matrix is the prevention of dye degradation under the influence of high energy ultraviolet (UV) radiation while the dye presence improves the chitosan heat resistance. It is caused by mutual interactions between macromolecules and dye. Owing to the protective action of chitosan, the dye release in liquid medium is limited. Chitosan solutions with a few percent additions of squaraine can be used in biomedical imaging thanks to the ability to emit light, while chitosan films can be protective coatings resistant to high temperatures and UV radiation.

17.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671105

RESUMO

An adsorption process of magnetite nanoparticles functionalized with aminated chitosan (Fe3O4-AChit) showing application potential in nanomedicine into cell membrane models was studied. The cell membrane models were formed using a Langmuir technique from three selected phospholipids with different polar head-groups as well as length and carbon saturation of alkyl chains. The research presented in this work reveals the existence of membrane model composition-dependent regulation of phospholipid-nanoparticle interactions. The influence of the positively charged Fe3O4-AChit nanoparticles on a Langmuir film stability, phase state, and textures is much greater in the case of these formed by negatively charged 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG) than those created by zwitterionic 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC). The adsorption kinetics recorded during penetration experiments show that this effect is caused by the strongest adsorption of the investigated nanoparticles into the DPPG monolayer driven very likely by the electrostatic attraction. The differences in the adsorption strength of the Fe3O4-AChit nanoparticles into the Langmuir films formed by the phosphatidylcholines were also observed. The nanoparticles adsorbed more easily into more loosely packed POPC monolayer.


Assuntos
Membrana Celular/química , Quitosana/química , Compostos Férricos/química , Nanomedicina , Nanopartículas/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Aminas/química , Animais , Humanos , Cinética , Modelos Biológicos , Propriedades de Superfície
18.
Materials (Basel) ; 14(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419055

RESUMO

Since their discovery, magnetic nanoparticles (MNPs) have become materials with great potential, especially considering the applications of biomedical sciences. A series of works on the preparation, characterization, and application of MNPs has shown that the biological activity of such materials depends on their size, shape, core, and shell nature. Some of the most commonly used MNPs are those based on a magnetite core. On the other hand, synthetic biopolymers are used as a protective surface coating for these nanoparticles. This review describes the advances in the field of polymer-coated MNPs for protein immobilization over the past decade. General methods of MNP preparation and protein immobilization are presented. The most extensive section of this article discusses the latest work on the use of polymer-coated MNPs for the physical and chemical immobilization of three types of proteins: enzymes, antibodies, and serum proteins. Where possible, the effectiveness of the immobilization and the activity and use of the immobilized protein are reported. Finally, the information available in the peer-reviewed literature and the application perspectives for the MNP-immobilized protein systems are summarized as well.

19.
Materials (Basel) ; 13(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906667

RESUMO

Polymer flocculants are used to promote solid-liquid separation processes in potable water and wastewater treatment. Recently, bio-based flocculants have received a lot of attention due to their superior advantages over conventional synthetic polymers or inorganic agents. Among natural polymers, polysaccharides show many benefits such as biodegradability, non-toxicity, ability to undergo different chemical modifications, and wide accessibility from renewable sources. The following article provides an overview of bio-based flocculants and their potential application in water treatment, which may be an indication to look for safer alternatives compared to synthetic polymers. Based on the recent literature, a new approach in searching for biopolymer flocculants sources, flocculation mechanisms, test methods, and factors affecting this process are presented. Particular attention is paid to flocculants based on starch, cellulose, chitosan, and their derivatives because they are low-cost and ecological materials, accepted in industrial practice. New trends in water treatment technology, including biosynthetic polymers, nanobioflocculants, and stimulant-responsive flocculants are also considered.

20.
Materials (Basel) ; 13(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756340

RESUMO

Materials based on natural high molecular compounds are particularly interesting for biomedical applications. It is known that the cross-linking agent used for preparation of biomacromolecule-based materials is as important as used biopolymer. Therefore, natural cross-linkers containing reactive carbonyl groups are of great interest especially for modifying properties of natural polysaccharides. One of the most popular cross-linking agents is glutaraldehyde. Nevertheless, the unreacted particles can be released from the cross-linked material and cause cytotoxic effects. This can be eliminated when using a cross-linker based e.g., on polysaccharides. This article describes quick and efficient synthesis of dialdehyde chitosan (DACS) and its application for the preparation of chitosan films. Materials obtained with different amount of DACS were fully characterized in terms of structure and surface morphology. Thermal and mechanical properties as well as hydrophilic character were also examined. The results obtained were compared with the materials obtained by cross-linking chitosan with low molecular weight glutaraldehyde and high molecular weight cross-linking agent based on polysaccharide-dialdehyde starch. Toxicity of all obtained materials was tested using the Microtox® test. It has been shown that due to better mechanical, thermal and surface properties as well as lower toxicity, dialdehyde chitosan is a very promising crosslinking agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...