Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175157

RESUMO

17-ß-estradiol (EST) is the most potent form of naturally occurring estrogens; therefore, it has found a wide pharmaceutical application. The major problem associated with the use of EST is its very low water solubility, resulting in poor oral bioavailability. To overcome this drawback, a complexation with cyclodextrins (CD) has been suggested as a solution. In this work, the host-guest inclusion complex between the ß-CD and EST has been prepared using four different methods. The obtained samples have been deeply characterized using 13C CP MAS solid state NMR, PXRD, FT-IR, TGA, DSC, and SEM. Using SCXRD, the crystal structure of the complex has been determined, being to the best of our knowledge the first solved crystal structure of an estrogen/CD complex. The periodic DFT calculations of NMR properties using GIPAW were found to be particularly helpful in the analysis of disorder in the solid state and interpretation of experimental NMR results. This work highlights the importance of a combined ssNMR/SCXRD approach to studying the structure of the inclusion complexes formed by cyclodextrins.

2.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108074

RESUMO

The aim of this study was to develop an innovative, dual-stimuli-responsive smart hydrogel local drug delivery system (LDDS), potentially useful as an injectable simultaneous chemotherapy and magnetic hyperthermia (MHT) antitumor treatment device. The hydrogels were based on a biocompatible and biodegradable poly(ε-caprolactone-co-rac-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-rac-lactide) (PCLA-PEG-PCLA, PCLA) triblock copolymer, synthesized via ring-opening polymerization (ROP) in the presence of a zirconium(IV) acetylacetonate (Zr(acac)4) catalyst. The PCLA copolymers were successfully synthesized and characterized using NMR and GPC techniques. Furthermore, the gel-forming and rheological properties of the resulting hydrogels were thoroughly investigated, and the optimal synthesis conditions were determined. The coprecipitation method was applied to create magnetic iron oxide nanoparticles (MIONs) with a low diameter and a narrow size distribution. The magnetic properties of the MIONs were close to superparamagnetic upon TEM, DLS, and VSM analysis. The particle suspension placed in an alternating magnetic field (AMF) of the appropriate parameters showed a rapid increase in temperature to the values desired for hyperthermia. The MIONs/hydrogel matrices were evaluated for paclitaxel (PTX) release in vitro. The release was prolonged and well controlled, displaying close to zero-order kinetics; the drug release mechanism was found to be anomalous. Furthermore, it was found that the simulated hyperthermia conditions had no effect on the release kinetics. As a result, the synthesized smart hydrogels were discovered to be a promising antitumor LDDS, allowing simultaneous chemotherapy and hyperthermia treatment.


Assuntos
Hidrogéis , Nanopartículas de Magnetita , Hidrogéis/química , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química , Sistemas de Liberação de Medicamentos , Temperatura
3.
Molecules ; 28(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985668

RESUMO

Camptothecin (CPT), an alkaloid with potent anticancer activity, is still not used in clinical practice due to its high hydrophobicity, toxicity, and poor active-form stability. To address these shortcomings, our research focuses on the encapsulation of this drug in the poly(amidoamine) (PAMAM) dendrimer macromolecule. The PAMAM dendrimer/CPT complex was synthesized and thoroughly characterized. The in vitro drug release study revealed that the drug was released in a slow and controlled manner in acidic and physiological conditions and that more than 80% of the drug was released after 168 h of incubation. Furthermore, it was demonstrated that CPT was released with first-order kinetics and non-Fickian transport. The studies on the hemolytic activity of the synthesized complex indicated that it is hemocompatible for potential intravenous administration at a concentration ≤ 5 µg/mL. Additionally, the developed product was shown to reduce the viability of non-small-cell lung cancer cells (A549) in a concentration- and time-dependent manner, and cancer cells were more susceptible to the complex than normal fibroblasts. Lastly, molecular modeling studies revealed that the lactone or carboxylic forms of CPT had a significant impact on the shape and stability of the complex and that its formation with the lactone form of CPT was more energetically favorable for each subsequent molecule than the carboxylic form. The report represents a systematic and structured approach to develop a PAMAM dendrimer/CPT complex that can be used as an effective drug delivery system (DDS) for the potential treatment of non-small-cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Dendrímeros , Neoplasias Pulmonares , Humanos , Dendrímeros/farmacologia , Linhagem Celular , Camptotecina/farmacologia
4.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361098

RESUMO

In this paper, injectable, thermosensitive smart hydrogel local drug delivery systems (LDDSs) releasing the model antitumour drug 5-fluorouracil (5-FU) were developed. The systems were based on biodegradable triblock copolymers synthesized via ring opening polymerization (ROP) of ε-caprolactone (CL) in the presence of poly(ethylene glycol) (PEG) and zirconium(IV) acetylacetonate (Zr(acac)4), as co-initiator and catalyst, respectively. The structure, molecular weight (Mn) and molecular weight distribution (D) of the synthesized materials was studied in detail using nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) techniques; the optimal synthesis conditions were determined. The structure corresponded well to the theoretical assumptions. The produced hydrogels demonstrated a sharp sol-gel transition at temperature close to physiological value, forming a stable gel with good mechanical properties at 37 °C. The kinetics and mechanism of in vitro 5-FU release were characterized by zero order, first order, Higuchi and Korsmeyer-Peppas mathematical models. The obtained results indicate good release control; the kinetics were generally defined as first order according to the predominant diffusion mechanism; and the total drug release time was approximately 12 h. The copolymers were considered to be biodegradable and non-toxic; the resulting hydrogels appear to be promising as short-term LDDSs, potentially useful in antitumor therapy.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Sistemas de Liberação de Medicamentos , Fibroblastos/efeitos dos fármacos , Fluoruracila/administração & dosagem , Hidrogéis/administração & dosagem , Temperatura , Animais , Materiais Biocompatíveis/química , Proliferação de Células , Células Cultivadas , Fibroblastos/citologia , Hidrogéis/síntese química , Camundongos
5.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919556

RESUMO

Mechanochemical and in-solution synthesis of caffeine complexes with α-, ß-, and γ-cyclodextrins was optimized. It was found that short-duration, low-energy cogrinding, and evaporation (instead of freeze-drying) are effective methods for the formation and isolation of these complexes. The products obtained, their pure components, and their mixtures were examined by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), FT-IR and Raman spectroscopy. Moreover, molecular modeling provided an improved understanding of the association process between the guest and host molecules in these complexes. The complexes were found to exhibit high toxicity in zebrafish (Danio rerio) embryos, in contrast to pure caffeine and cyclodextrins at the same molar concentrations. HPLC measurements of the caffeine levels in zebrafish embryos showed that the observed cytotoxicity is not caused by an increased caffeine concentration in the body of the organism, as the concentrations are similar regardless of the administered caffeine form. Therefore, the observed high toxicity could be the result of the synergistic effect of caffeine and cyclodextrins.


Assuntos
Cafeína/química , Ciclodextrinas/química , Animais , Cafeína/farmacologia , Varredura Diferencial de Calorimetria , Ciclodextrinas/farmacologia , Sinergismo Farmacológico , Embrião não Mamífero/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X , Peixe-Zebra
6.
Materials (Basel) ; 14(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379370

RESUMO

A novel and promising hydrogel drug delivery system (DDS) capable of releasing 5­fluorouracil (5-FU) in a prolonged and controlled manner was obtained using ε­caprolactone­poly(ethylene glycol) (CL-PEG) or rac­lactide-poly(ethylene glycol) (rac­LA-PEG) copolymers. Copolymers were synthesized via the ring-opening polymerization (ROP) process of cyclic monomers, ε­caprolactone (CL) or rac-lactide (rac-LA), in the presence of zirconium(IV) octoate (Zr(Oct)4) and poly(ethylene glycol) 200 (PEG 200) as catalyst and initiator, respectively. Obtained triblock copolymers were characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) techniques; the structure and tacticity of the macromolecules were determined. The relationship between the copolymer structure and the reaction conditions was evaluated. The optimal conditions were specified as 140 °C and 24 h. In the next step, CL-PEG and rac-LA-PEG copolymers were chemically crosslinked using hexamethylene diisocyanate (HDI). Selected hydrogels were subjected to in vitro antitumor drug release studies, and the release data were analyzed using zero-order, first-order, and Korsmeyer-Peppas mathematical models. Controlled and prolonged (up to 432 h) 5-FU release profiles were observed for all examined hydrogels with first-order or zero-order kinetics. The drug release mechanism was generally denoted as non-Fickian transport.

7.
Pharmaceutics ; 12(10)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050621

RESUMO

This review discusses a set of instrumental and computational methods that are used to characterize hydrated forms of APIs (active pharmaceutical ingredients). The focus has been put on highlighting advantages as well as on presenting some limitations of the selected analytical approaches. This has been performed in order to facilitate the choice of an appropriate method depending on the type of the structural feature that is to be analyzed, that is, degree of hydration, crystal structure and dynamics, and (de)hydration kinetics. The presented techniques include X-ray diffraction (single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD)), spectroscopic (solid state nuclear magnetic resonance spectroscopy (ssNMR), Fourier-transformed infrared spectroscopy (FT-IR), Raman spectroscopy), thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)), gravimetric (dynamic vapour sorption (DVS)), and computational (molecular mechanics (MM), Quantum Mechanics (QM), molecular dynamics (MD)) methods. Further, the successful applications of the presented methods in the studies of hydrated APIs as well as studies on the excipients' influence on these processes have been described in many examples.

8.
J Food Sci Technol ; 57(8): 2828-2839, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32616962

RESUMO

Due to the growing interest in running a healthy life, including the diet a special interest has been put in searching for products that are rich in nutrients, macro and micronutrients and vitamins. Dates are the fruits that meet these requirements and show multidirectional pro-health effects. These fruits are a source of potassium and other macro- and micronutrients. They have antioxidant properties thanks to the content of flavonoids and polyphenols. The elemental composition (Al, Ca, Cu, Fe, K, Mg, Mn, P, Sr and Zn) and antioxidant properties (total equivalent antioxidant capacity, total polyphenol content, total flavonoid content) of various dates from different regions of the world was determined. The results have shown that the peel and flesh of dates differ significantly in chemical composition. The peel is significantly richer in chemical components of biological importance. Discriminant analysis of the results obtained for dates originated from various regions indicated that the main factor determining the tested chemical composition is the place of cultivation, not the variety.

9.
Int J Nanomedicine ; 15: 4541-4572, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617004

RESUMO

Among modern drug formulations, stimuli-responsive hydrogels also called "smart hydrogels" deserve a special attention. The basic feature of this system is the ability to change their mechanical properties, swelling ability, hydrophilicity, bioactive molecules permeability, etc., influenced by various stimuli, such as temperature, pH, electromagnetic radiation, magnetic field and biological factors. Therefore, stimuli-responsive matrices can be potentially used in tissue engineering, cell cultures and technology of innovative drug delivery systems (DDSs), releasing the active substances under the control of internal or external stimuli. Moreover, smart hydrogels can be used as injectable DDSs, due to gel-sol transition connected with in situ cross-linking process. Innovative smart hydrogel DDSs can be utilized as matrices for targeted therapy, which enhances the effectiveness of tumor chemotherapy and subsequently limits systemic toxicity. External stimulus sensitivity allows remote control over the drug release profile and gel formation. On the other hand, internal factors provide drg accumulation in tumor tissue and reduce the concentration of active drug form in healthy tissue. In this report, we summarise the basic knowledge and chemical strategies for the synthetic smart hydrogel DDSs applied in antitumor therapy.


Assuntos
Hidrogéis/química , Hidrogéis/farmacocinética , Animais , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Campos Eletromagnéticos , Humanos , Hidrogéis/administração & dosagem , Concentração de Íons de Hidrogênio , Medicamentos Sintéticos/farmacocinética , Temperatura , Engenharia Tecidual
10.
J Comput Chem ; 40(6): 811-819, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30586162

RESUMO

Lead nitrate is an inorganic salt, commonly used for the accurate temperature determination in the solid state NMR spectroscopy, due to the strong temperature dependence of the 207 Pb chemical shift. As the reason for this phenomenon remained unknown, the main purpose of this study was to explain this temperature dependence at the molecular level. To achieve this, combined CASTEP geometry optimization, quantum molecular dynamics at chosen temperatures and GIPAW NMR computations were performed. Due to the previous literature reports on inaccuracy in the calculation of 207 Pb NMR parameters using GIPAW, a large emphasis was put on the optimization of computational method. The application of quantum molecular dynamics provided the simulation of the temperature-dependent vibrational motions and enabled to accurately compute the changes in the value of Pb δiso resulting from them. © 2018 Wiley Periodicals, Inc.

11.
Solid State Nucl Magn Reson ; 97: 17-24, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30508738

RESUMO

Piracetam, a popular nootropic drug, widely used in the treatment of age-associated mental decline and disorders of the nervous system such as Alzheimer's disease and dementia exists under normal pressure in three polymorphic forms (P1, P2 and P3) of different stability. In this work the relative stability of piracetam polymorphs depending on the temperature was studied using the ssNMR spectroscopy combined with ab initio DFT calculations. The ssNMR spectroscopy enabled the analysis of polymorphic phase transition in the case of pure active substance as well as polymorphic form identification in the analysis of the commercial solid dosage formulations. Quantum chemical calculations of phonon density of states were performed to obtain the temperature dependence of the enthalpy, entropy and free energy of the piracetam polymorphs in a quasi-harmonic approximation. GIPAW NMR calculations combined with molecular dynamics were performed to support the chemical shift assignment. The obtained results showed that DFT calculations can be used not only to obtain the NMR parameters but also to predict the influence of the temperature on the stability order of the polymorphic forms of molecular crystals.


Assuntos
Teoria da Densidade Funcional , Espectroscopia de Ressonância Magnética , Piracetam/química , Conformação Molecular , Simulação de Dinâmica Molecular , Transição de Fase , Temperatura
13.
J Comput Chem ; 39(19): 1300-1306, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29532492

RESUMO

The aim of this study was to determine whether the periodic density functional theory (DFT) calculations can be used for accurate prediction of the influence of the increased pressure on crystal structure and stability of molecular solids. To achieve this goal a series of geometry optimization and thermodynamic parameters calculations were performed for γ-glycine and δ-glycine structures at different pressure values using CASTEP program. In order to perform most accurate geometry optimization various exchange-correlation functionals defined within generalized gradient approximation (GGA): PBE, PW91, RPBE, WC, PBESOL as well as defined within local density approximation (LDA), i.e. CAPZ, were tested. Geometry optimization was carried out using different dispersion correction methods (i.e. Grimme, TS, OBS) or without them. The linear response density functional perturbation theory (DFPT) was used to obtain the phonon dispersion curves and phonon density of states from which thermodynamic parameters, such as: free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were evaluated. The results of the geometry optimization depend strongly on the choice of the DFT functional. Calculated differences between the free energy of the studied polymorphic forms at the studied pressure values were consistent with experimental observations on their stability. The computations of thermodynamic properties not only confirmed the order of stability of two studied forms, but also enabled to predict the pressure at which this order is reversed. The results obtained in this study have proven that the plane-wave basis set first principles calculations under periodic conditions is suitable for accurate prediction of crystal structure and stability. © 2018 Wiley Periodicals, Inc.

14.
J Comput Chem ; 39(14): 853-861, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29315751

RESUMO

Glycine is a common amino acid with relatively complex chemistry in solid state. Although several polymorphs (α, ß, δ, γ, ε) of crystalline glycine are known, for NMR spectroscopy the most important is a polymorph, which is used as a standard for calibration of spectrometer performance and therefore it is intensively studied by both experimental methods and theoretical computation. The great scientific interest in a glycine results in a large number of crystallographic information files (CIFs) deposited in Cambridge Structural Database (CSD). The aim of this study was to evaluate the influence of the chosen crystal structure of α glycine obtained in different crystallographic experimental conditions (temperature, pressure and source of radiation of α glycine) on the results of periodic DFT calculation. For this purpose the total of 136 GIPAW calculations of α glycine NMR parameters were performed, preceded by the four approaches ("SP", "only H", "full", "full+cell") of structure preparation. The analysis of the results of those computations performed on the representative group of 34 structures obtained at various experimental conditions revealed that though the structures were generally characterized by good accuracy (R < 0.05 for most of them) the results of the periodic DFT calculations performed using the unoptimized structures differed significantly. The values of the standard deviations of the studied NMR parameters were in most cases decreasing with the number of optimized parameters. The most accurate results (of the calculations) were in most cases obtained using the structures with solely hydrogen atoms positions optimized. © 2018 Wiley Periodicals, Inc.

15.
J Pharm Biomed Anal ; 149: 160-165, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29121569

RESUMO

The application of various techniques (FT-IR, PXRD, ssNMR) in the analysis of solid dosage forms with low concentration of an API (17-ß-estradiol hemihydrate, EBHH) was tested. PXRD analysis of Estrofem Mite tablets (EMT) confirmed the presence of the main crystalline excipient, α-lactose monohydrate. In the PXRD pattern of EMT the strong background from polycrystalline excipients, i.e. hydroxypropylmethylcellulose and corn starch was observed. FT-IR spectra were characterized by the broad peaks in the 3000-3600cm-1 region of the OH stretching modes coming from multiple hydrogen bonds that are present in the structures of the excipients (α-lactose monohydrate, corn starch) and API. The only technique which unambiguously confirmed the presence of an API in the EMT was solid state NMR. Despite the tabletting process each of the EMT component retained its characteristic features like relaxation time and T1ρI. Due to the possibility of the manipulation in the experimental registration parameters like recycle delay (RD), evolution time (τ) and contact time (CT) it was possible to perform multiple experiments on the same sample of EMT. The most valuable were the inversion recovery CP experiments in which, by setting the proper values of τ, it was possible to selectively observe the signals of the chosen component of the drug formulation. In this study the great potential of solid state NMR in the analysis of solid dosage forms, as the unique technique that combines the possibility of selective observation of the chosen signals with the non destructive character that enables further analysis of the same sample, was confirmed.


Assuntos
Química Farmacêutica/métodos , Espectroscopia de Ressonância Magnética/métodos , Difração de Pó/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos , Química Farmacêutica/instrumentação , Composição de Medicamentos , Estradiol/análise , Estradiol/química , Excipientes/análise , Excipientes/química , Espectroscopia de Ressonância Magnética/instrumentação , Difração de Pó/instrumentação , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Comprimidos/análise , Comprimidos/química , Difração de Raios X/instrumentação
16.
Int J Pharm ; 529(1-2): 193-199, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28663085

RESUMO

Diosmin, a flavone glycoside frequently used in therapy of various veins diseases in monohydrate form, exhibits poor solubility in water and low bioavailability. Due to the fact that the anhydrous forms of drugs generally have better bioavailability than the corresponding hydrates, the aim of this study was to analyze the conversion of diosmin monohydrate (DSNM) to anhydrous diosmin (DSNA) that occurs upon heating. The mechanism of this transformation was examined as well as advanced structural studies of each form were performed using 13C CP/MAS SSNMR, DSC, FT-IR and PXRD techniques. Spectroscopic findings were supported by CASTEP-DFT calculations of NMR and IR parameters. The pathway of reversible transformation was specified as follows: DSNM upon heating for 24h at temperature up to 110°C losses non-crystalline water and converts into metastable form (DSNM*) that turns into DSNA during heating at temperature 140°C for next 24h. Under room temperature DSNA spontaneously absorbs moisture from air and turns into a DSNM within 72h. The detailed analysis of CP kinetic parameters (T1ρI) revealed presence of metastable, intermediate form of diosmin (DSNM*) and allowed its characterization. The results are essential for further studies comparing dissolution and bioavailability of DSNM and DSNA. The study provided an understanding of the conversion pathway of the diosmin monohydrate into its anhydrate form when it is exposed to increased temperature.


Assuntos
Diosmina/química , Disponibilidade Biológica , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água , Difração de Raios X
17.
Int J Pharm ; 513(1-2): 538-542, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27667758

RESUMO

Solid-state nuclear magnetic resonance (ssNMR) is a powerful and unique method for analyzing solid forms of the active pharmaceutical ingredients (APIs) directly in their original formulations. Unfortunately, despite their wide range of application, the ssNMR experiments often suffer from low sensitivity and peaks overlapping between API and excipients. To overcome these limitations, the crosspolarization inversion recovery method was successfully used. The differences in the spin-lattice relaxation time constants for hydrogen atoms T1(H) between API and excipients were employed in order to separate and discriminate their peaks in ssNMR spectra as well as to increase the intensity of API signals in low-dose formulations. The versatility of this method was demonstrated by different examples, including the excipients mixture and commercial solid dosage forms (e.g. granules and tablets).


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Acetaminofen/análise , Carbazóis/análise , Carvedilol , Celulose/análogos & derivados , Celulose/análise , Formas de Dosagem , Excipientes/análise , Propanolaminas/análise , Sorbitol/análise
18.
J Pharm Biomed Anal ; 122: 29-34, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26836362

RESUMO

Excipients used in the solid drug formulations differ in their NMR relaxation and (13)C cross-polarization (CP) kinetics parameters. Therefore, experimental parameters like contact time of cross-polarization and repetition time have a major impact on the registered solid state NMR spectra and in consequence on the results of the NMR analysis. In this work the CP kinetics and relaxation of the most common pharmaceutical excipients: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. The studied excipients differ significantly in their optimum repetition time (from 5 s to 1200 s) and T(1ρ)(I) parameters (from 2 ms to 73 ms). The practical use of those differences in the excipients composition analysis was demonstrated on the example of commercially available tablets containing indapamide as an API. The information presented in this article will help to choose the correct acquisition parameters and also will save the time and effort needed for their optimization in the NMR analysis of the solid drug formulations.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Excipientes/química , Comprimidos/química , Química Farmacêutica/métodos , Indapamida/química , Cinética
19.
J Pharm Biomed Anal ; 122: 81-9, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26845204

RESUMO

Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Excipientes/química , Preparações Farmacêuticas/química , Química Farmacêutica/métodos
20.
J Pharm Biomed Anal ; 102: 54-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25240729

RESUMO

The antioxidant activity of the crude extract (60% ethanol) from the leaves of Desmodium adscendens (Sw.) DC. (Fabaceae) was observed in DPPH, xanthine/xanthine oxidase, lipid peroxydation and neutrophils burst tests. Further activity-guided fractionation on C18 column (water, 20% methanol, 50% methanol and 100% methanol) resulted in the separation of the fraction (50% methanol) with the highest antioxidant capacity. HPLC-DAD analysis of biologically active fraction revealed the presence of two pairs of flavonoid isomers as the dominant constituents. Those compounds were isolated and purified by multi-step liquid column chromatography (Sephadex LH20). Their structures were elucidated by various spectroscopic techniques, including NMR, UV and MS. Based on 1D and 2D NMR spectra as well as ion fragmentation, flavonoids were identified as: isovitexin 2''-O-xyloside (1), vitexin 2''-O-xyloside (2), vitexin (3) and isovitexin (4). The hybrid HSQC-DEPT technique provided very fast determination of the glycosylation positions in aglycone and the type of glycosidic bond in the flavonoid isomers. This study provides novel information concerning identity of the major compounds present in the leaves of D. adscendens cultivated in Ghana, which broadens the knowledge about anti-inflammatory, antiallergic and antioxidant properties of their extracts.


Assuntos
Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Fabaceae/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/análise , Cromatografia Líquida de Alta Pressão , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Folhas de Planta/química , Plantas Medicinais/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...