Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 590742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868223

RESUMO

High throughput single cell multi-omics platforms, such as mass cytometry (cytometry by time-of-flight; CyTOF), high dimensional imaging (>6 marker; Hyperion, MIBIscope, CODEX, MACSima) and the recently evolved genomic cytometry (Citeseq or REAPseq) have enabled unprecedented insights into many biological and clinical questions, such as hematopoiesis, transplantation, cancer, and autoimmunity. In synergy with constantly adapting new single-cell analysis approaches and subsequent accumulating big data collections from these platforms, whole atlases of cell types and cellular and sub-cellular interaction networks are created. These atlases build an ideal scientific discovery environment for reference and data mining approaches, which often times reveals new cellular disease networks. In this review we will discuss how combinations and fusions of different -omic workflows on a single cell level can be used to examine cellular phenotypes, immune effector functions, and even dynamic changes, such as metabolomic state of different cells in a sample or even in a defined tissue location. We will touch on how pre-print platforms help in optimization and reproducibility of workflows, as well as community outreach. We will also shortly discuss how leveraging single cell multi-omic approaches can be used to accelerate cellular biomarker discovery during clinical trials to predict response to therapy, follow responsive cell types, and define novel druggable target pathways. Single cell proteome approaches already have changed how we explore cellular mechanism in disease and during therapy. Current challenges in the field are how we share these disruptive technologies to the scientific communities while still including new approaches, such as genomic cytometry and single cell metabolomics.


Assuntos
Descoberta de Drogas/métodos , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Análise de Célula Única/métodos , Biomarcadores , Citometria de Fluxo/métodos , Genômica/métodos , Humanos , Metabolômica/métodos , Proteômica/métodos
2.
Genetics ; 217(1): 1-15, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33683363

RESUMO

The human fungal pathogen Cryptococcus neoformans relies on a complex signaling network for the adaptation and survival at the host temperature. Protein phosphatase calcineurin is central to proliferation at 37°C but its exact contributions remain ill-defined. To better define genetic contributions to the C. neoformans temperature tolerance, 4031 gene knockouts were screened for genes essential at 37°C and under conditions that keep calcineurin inactive. Identified 83 candidate strains, potentially sensitive to 37°C, were subsequently subject to technologically simple yet robust assay, in which cells are exposed to a temperature gradient. This has resulted in identification of 46 genes contributing to the maximum temperature at which C. neoformans can proliferate (Tmax). The 46 mutants, characterized by a range of Tmax on drug-free media, were further assessed for Tmax under conditions that inhibit calcineurin, which led to identification of several previously uncharacterized knockouts exhibiting synthetic interaction with the inhibition of calcineurin. A mutant that lacked septin Cdc11 was among those with the lowest Tmax and failed to proliferate in the absence of calcineurin activity. To further define connections with calcineurin and the role for septins in high temperature growth, the 46 mutants were tested for cell morphology at 37°C and growth in the presence of agents disrupting cell wall and cell membrane. Mutants sensitive to calcineurin inhibition were tested for synthetic lethal interaction with deletion of the septin-encoding CDC12 and the localization of the septin Cdc3-mCherry. The analysis described here pointed to previously uncharacterized genes that were missed in standard growth assays indicating that the temperature gradient assay is a valuable complementary tool for elucidating the genetic basis of temperature range at which microorganisms proliferate.


Assuntos
Cryptococcus neoformans/genética , Termotolerância/genética , Calcineurina/genética , Calcineurina/metabolismo , Membrana Celular/metabolismo , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Septinas/genética , Septinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA