Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37927069

RESUMO

Wounding caused by insects or abiotic factors such as wind and hail can cause severe stress for plants. Intrigued by the observation that wounding induces expression of genes involved in surface wax synthesis in a jasmonoyl-isoleucine (JA-Ile)-independent manner, the role of wax biosynthesis and respective genes upon wounding was investigated. Wax, a lipid-based barrier, protects plants both from environmental threats as well as from an uncontrolled loss of water. Its biosynthesis is described to be regulated by abscisic acid (ABA), whereas the main wound-signal is the hormone JA-Ile. We show in this study, that genes coding for enzymes of surface wax synthesis are induced upon wounding in Arabidopsis thaliana leaves in a JA-Ile-independent but ABA-dependent manner. Furthermore, the ABA-dependent transcription factor MYB96 is a key regulator of wax biosynthesis upon wounding. On the metabolite level, wound-induced wax accumulation is strongly reduced in JA-Ile-deficient plants, but this induction is only slightly decreased in ABA-reduced plants. To further analyze the ABA-dependent wound response, we conducted wounding experiments in high humidity. They show that high humidity prevents the wound-induced wax accumulation in A. thaliana leaves. Together the data presented in this study show that wound-induced wax accumulation is JA-Ile-dependent on the metabolite level, but the expression of genes coding for enzymes of wax synthesis is regulated by ABA.

2.
Bio Protoc ; 13(18): e4824, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37753471

RESUMO

Here, we present an approach combining fluorescence in situ hybridization (FISH) and immunolabeling for localization of pri-miRNAs in isolated nuclei of A. thaliana. The presented method utilizes specific DNA oligonucleotide probes, modified by addition of digoxigenin-labeled deoxynucleotides to its 3' hydroxyl terminus by terminal deoxynucleotidyl transferase (TdT). The probes are then detected by immunolabeling of digoxigenin (DIG) using specific fluorescent-labeled antibodies to visualize hybridized probes. Recently, we have applied this method to localize pri-miRNA156a, pri-miRNA163, pri-miRNA393a, and pri-miRNA414 in the nuclei isolated from leaves of 4-week-old A. thaliana. The present approach can be easily implemented to analyze nuclear distribution of diverse RNA classes, including mRNAs and pri-miRNAs in isolated fixed cells or nuclei from plant.

4.
Plant Physiol ; 193(4): 2361-2380, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37619984

RESUMO

Lipid droplets (LDs) of seed tissues are storage organelles for triacylglycerols (TAGs) that provide the energy and carbon for seedling establishment. In the major route of LD degradation (lipolysis), TAGs are mobilized by lipases. However, LDs may also be degraded via lipophagy, a type of selective autophagy, which mediates LD delivery to vacuoles or lysosomes. The exact mechanisms of LD degradation and the mobilization of their content in plants remain unresolved. Here, we provide evidence that LDs are degraded via a process morphologically resembling microlipophagy in Arabidopsis (Arabidopsis thaliana) seedlings. We observed the entry and presence of LDs in the central vacuole as well as their breakdown. Moreover, we show co-localization of AUTOPHAGY-RELATED PROTEIN 8b (ATG8b) and LDs during seed germination and localization of lipidated ATG8 (ATG8-PE) to the LD fraction. We further demonstrate that structural LD proteins from the caleosin family, CALEOSIN 1 (CLO1), CALEOSIN 2 (CLO2), and CALEOSIN 3 (CLO3), interact with ATG8 proteins and possess putative ATG8-interacting motifs (AIMs). Deletion of the AIM localized directly before the proline knot disrupts the interaction of CLO1 with ATG8b, suggesting a possible role of this region in the interaction between these proteins. Collectively, we provide insights into LD degradation by microlipophagy in germinating seeds with a particular focus on the role of structural LD proteins in this process.


Assuntos
Arabidopsis , Plântula , Arabidopsis/genética , Arabidopsis/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Gotículas Lipídicas/metabolismo , Microautofagia , Plântula/genética , Plântula/metabolismo , Triglicerídeos/metabolismo
5.
Postepy Biochem ; 68(1): 46-56, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35569044

RESUMO

In plants, lipids serve as one of the major and vital cellular constituents. Neutral lipids reserves play an essential role in the plant life cycle by providing carbon and energy equivalents for periods of active metabolism. The most common form of lipid storage are triacylglycerols (TAGs) packed into specialized organelles called lipid droplets (LDs). They have been observed in diverse plant organs and tissues, like oil seeds or pollen grains. LDs consist of a core, composed mostly of TAGs, enclosed by a single layer of phospholipids that is decorated by a unique set of structural proteins. Moreover, the recent advances in exploration of LDs proteome revealed a plethora of diverse proteins interacting with LDs. This is likely the result of a highly dynamic nature of these organelles and their involvement in many diverse aspect of cellular metabolism, tightly synchronized with plant developmental programs and directly related to plant-environment interactions. In this review we summarize and discuss the current progress in understanding the role of LDs and their cargo during plants life cycle, with a special emphasis on developmental aspects.


Assuntos
Gotículas Lipídicas , Plantas , Crescimento e Desenvolvimento , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Plantas/metabolismo , Proteoma/metabolismo
6.
Foods ; 11(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454717

RESUMO

A plant-based diet has become more popular as a pathway to transition to more sustainable diets and personal health improvement in recent years. Hence, vegan mayonnaise can be proposed as an egg-free, allergy friendly vegan substitute for full-fat conventional mayonnaise. This study intends to evaluate the effect of aquafaba from chickpeas and blends of refined rapeseed oil (RRO) with different cold-pressed oils (10% of rapeseed oil-CPRO, sunflower oil-CPSO, linseed oil-CPLO or camelina oil-CPCO) on the radical scavenging, structural, emulsifying, and optical properties of novel vegan mayonnaise samples. Moreover, the functional properties and radical scavenging activity (RSA) of mayonnaise ingredients were evaluated. Aquafaba-based emulsions had a higher RSA than commercial vegan mayonnaise, determined by QUick, Easy, Novel, CHEap and Reproducible procedures using 2,2-diphenyl-1-picrylhydrazyl (QUENCHER-DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (QUENCHER-ABTS). Oxidative parameters such as peroxide values (PV), anisidine values (AnV), total oxidation (TOTOX) indexes and acid values (AV) of the proposed vegan mayonnaises were similar to those for commercial mayonnaises. Moreover, aquafaba-based samples had smaller oil droplet sizes than commercial vegan mayonnaise, which was observed using confocal laser scanning microscopy. The novel formulas developed in this study are promising alternatives to commercial vegan emulsions.

7.
Plant Cell Physiol ; 63(3): 317-325, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-34910213

RESUMO

Ceramides (Cers) and long-chain bases (LCBs) are plant sphingolipids involved in the induction of plant programmed cell death (PCD). The fatty acid hydroxylase mutant fah1 fah2 exhibits high Cer levels and moderately elevated LCB levels. Salicylic acid glucoside level is increased in this mutant, but no cell death can be detected by trypan blue staining. To determine the effect of Cers with different chain lengths, fah1 fah2 was crossed with ceramide synthase mutants longevity assurance gene one homologue1-3 (loh1, loh2 and loh3). Surprisingly, only triple mutants with loh2 show cell death detected by trypan blue staining under the selected conditions. Sphingolipid profiling revealed that the greatest differences between the triple mutant plants are in the LCB and LCB-phosphate (LCB-P) fraction. fah1 fah2 loh2 plants accumulate LCB d18:0, LCB t18:0 and LCB-P d18:0. Crossing fah1 fah2 loh2 with the salicylic acid (SA) synthesis mutant sid2-2 and with the SA signaling mutants enhanced disease susceptibility 1-2 (eds1-2) and phytoalexin deficient 4-1 (pad4-1) revealed that lesions are SA- and EDS1-dependent. These quadruple mutants also confirm that there may be a feedback loop between SA and sphingolipid metabolism as they accumulated less Cers and LCBs. In conclusion, PCD in fah1 fah2 loh2 is a SA- and EDS1-dependent phenotype, which is likely due to accumulation of LCBs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Apoptose , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxirredutases , Fenótipo , Ácido Salicílico/metabolismo , Esfingolipídeos/metabolismo
9.
New Phytol ; 231(1): 297-314, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33720428

RESUMO

Sphingolipids are enriched in microdomains in the plant plasma membrane (PM). Hydroxyl groups in the characteristic long-chain base (LCB) moiety might be essential for the interaction between sphingolipids and sterols during microdomain formation. Investigating LCB hydroxylase mutants in Physcomitrium patens might therefore reveal the role of certain plant sphingolipids in the formation of PM subdomains. Physcomitrium patens mutants for the LCB C-4 hydroxylase S4H were generated by homologous recombination. Plants were characterised by analysing their sphingolipid and steryl glycoside (SG) profiles and by investigating different gametophyte stages. s4h mutants lost the hydroxyl group at the C-4 position of their LCB moiety. Loss of this hydroxyl group caused global changes in the moss sphingolipidome and in SG composition. Changes in membrane lipid composition may trigger growth defects by interfering with the localisation of membrane-associated proteins that are crucial for growth processes such as signalling receptors or callose-modifying enzymes. Loss of LCB-C4 hydroxylation substantially changes the P. patens sphingolipidome and reveals a key role for S4H during development of nonvascular plants. Physcomitrium patens is a valuable model for studying the diversification of plant sphingolipids. The simple anatomy of P. patens facilitates visualisation of physiological processes in biological membranes.


Assuntos
Bryopsida , Esfingolipídeos , Glucanos , Hidroxilação
10.
Front Plant Sci ; 11: 579019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014002

RESUMO

In eukaryotic cells, lipids in the form of triacylglycerols (TAGs) are the major reservoir of cellular carbon and energy. These TAGs are packed into specialized organelles called lipid droplets (LDs). They can be found in most, if not all, types of cells, from bacteria to human. Recent data suggest that rather than being simple storage organelles, LDs are very dynamic structures at the center of cellular metabolism. This is also true in plants and algae, where LDs have been implicated in many processes including energy supply; membrane structure, function, trafficking; and signal transduction. Plant and algal LDs also play a vital role in human life, providing multiple sources of food and fuel. Thus, a lot of attention has been paid to metabolism and function of these organelles in recent years. This review summarizes the most recent advances on LDs degradation as a key process for TAGs release. While the initial knowledge on this process came from studies in oilseeds, the findings of the last decade revealed high complexity and specific mechanisms of LDs degradation in plants and algae. This includes identification of numerous novel proteins associated with LDs as well as a prominent role for autophagy in this process. This review outlines, systemizes, and discusses the most current data on LDs catabolism in plants and algae.

11.
Plant Cell ; 32(4): 1240-1269, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32001503

RESUMO

COMPROMISED HYDROLYSIS OF TRIACYLGLYCEROLS7 (CHT7) in Chlamydomonas (Chlamydomonas reinhardtii) was previously shown to affect the transcription of a subset of genes during nitrogen (N)-replete growth and following N refeeding. Here, we show that an extensive derepression of genes involved in DNA metabolism and cell cycle-related processes, as well as downregulation of genes encoding oxidoreductases and nutrient transporters, occurs in the cht7 mutant during N deprivation. Cellular mutant phenotypes are consistent with the observed transcriptome misregulation, as cht7 cells fail to properly arrest growth, nuclear replication, and cell division following N deprivation. Reduction in cht7 colony formation following N refeeding is explained by its compromised viability during N deprivation and by the occurrence of abortive divisions during N refeeding. Surprisingly, the largely unstructured C-terminal half of CHT7 with predicted protein binding domains, but not the canonical CXC DNA binding domain, is essential for the ability of CHT7 to form stable complexes and reverse the cellular phenotypes and transcription levels in the cht7 mutant. Hence, although lacking the presumed DNA binding domain, CHT7 modulates the expression of cell cycle genes in response to N availability, which is essential for establishing an effective quiescent state and the coordinated resumption of growth following N refeeding.


Assuntos
Ciclo Celular/genética , Chlamydomonas/citologia , Chlamydomonas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Sequência de Aminoácidos , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Rastreamento de Células , DNA de Plantas/metabolismo , Meiose/genética , Modelos Biológicos , Mutação/genética , Nitrogênio/farmacologia , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Deleção de Sequência , Transcriptoma/genética
12.
Plant Physiol ; 182(2): 819-839, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31740503

RESUMO

The marine microalgae Nannochloropsis oceanica (CCMP1779) is a prolific producer of oil and is considered a viable and sustainable resource for biofuel feedstocks. Nitrogen (N) availability has a strong impact on the physiological status and metabolism of microalgal cells, but the exact nature of this response is poorly understood. To fill this gap we performed transcriptomic profiling combined with cellular and molecular analyses of N. oceanica CCMP1779 during the transition from quiescence to autotrophy. N deprivation-induced quiescence was accompanied by a strong reorganization of the photosynthetic apparatus and changes in the lipid homeostasis, leading to accumulation of triacylglycerol. Cell cycle activation and re-establishment of photosynthetic activity observed in response to resupply of the growth medium with N were accompanied by a rapid degradation of triacylglycerol stored in lipid droplets (LDs). Besides observing LD translocation into vacuoles, we also provide evidence for direct interaction between the LD surface protein (NoLDSP) and AUTOPHAGY-RELATED8 (NoATG8) protein and show a role of microlipophagy in LD turnover in N. oceanica CCMP1779. This knowledge is crucial not only for understanding the fundamental mechanisms controlling the cellular energy homeostasis in microalgal cells but also for development of efficient strategies to achieve higher algal biomass and better microalgal lipid productivity.


Assuntos
Processos Autotróficos/genética , Microalgas/metabolismo , Nitrogênio/metabolismo , Nutrigenômica , Fotossíntese/genética , Estramenópilas/metabolismo , Triglicerídeos/metabolismo , Autofagia/genética , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Processos Autotróficos/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Análise por Conglomerados , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Ontologia Genética , Homeostase/genética , Homeostase/fisiologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/ultraestrutura , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Microalgas/genética , Microscopia Eletrônica de Transmissão , Família Multigênica , Fotossíntese/fisiologia , Estramenópilas/genética , Vacúolos/metabolismo , Vacúolos/ultraestrutura
13.
New Phytol ; 226(1): 170-188, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31758808

RESUMO

Sphingolipids act as regulators of programmed cell death (PCD) and the plant defence response. The homeostasis between long-chain base (LCB) and ceramide (Cer) seems to play an important role in executions of PCD. Therefore, deciphering the role of neutral ceramidases (NCER) is crucial to identify the sphingolipid compounds that trigger and execute PCD. We performed comprehensive sphingolipid and phytohormone analyses of Arabidopsis ncer mutants, combined with gene expression profiling and microscopic analyses. While ncer1 exhibited early leaf senescence (developmentally controlled PCD - dPCD) and an increase in hydroxyceramides, ncer2 showed spontaneous cell death (pathogen-triggered PCD-like - pPCD) accompanied by an increase in LCB t18:0 at 35 d, respectively. Loss of NCER1 function resulted in accumulation of jasmonoyl-isoleucine (JA-Ile) in the leaves, whereas disruption of NCER2 was accompanied by higher levels of salicylic acid (SA) and increased sensitivity to Fumonisin B1 (FB1 ). All mutants were also found to activate plant defence pathways. These data strongly suggest that NCER1 hydrolyses ceramides whereas NCER2 functions as a ceramide synthase. Our results reveal an important role of NCER in the regulation of both dPCD and pPCD via a tight connection between the phytohormone and sphingolipid levels in these two processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Ceramidase Neutra/genética , Reguladores de Crescimento de Plantas , Esfingolipídeos
15.
Biotechnol Biofuels ; 11: 174, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977335

RESUMO

BACKGROUND: Although microalgal biofuels have potential advantages over conventional fossil fuels, high production costs limit their application in the market. We developed bio-flocculation and incubation methods for the marine alga, Nannochloropsis oceanica CCMP1779, and the oleaginous fungus, Mortierella elongata AG77, resulting in increased oil productivity. RESULTS: By growing separately and then combining the cells, the M. elongata mycelium could efficiently capture N. oceanica due to an intricate cellular interaction between the two species leading to bio-flocculation. Use of a high-salt culture medium induced accumulation of triacylglycerol (TAG) and enhanced the contents of polyunsaturated fatty acids (PUFAs) including arachidonic acid and docosahexaenoic acid in M. elongata. To increase TAG productivity in the alga, we developed an effective, reduced nitrogen-supply regime based on ammonium in environmental photobioreactors. Under optimized conditions, N. oceanica produced high levels of TAG that could be indirectly monitored by following chlorophyll content. Combining N. oceanica and M. elongata to initiate bio-flocculation yielded high levels of TAG and total fatty acids, with ~ 15 and 22% of total dry weight (DW), respectively, as well as high levels of PUFAs. Genetic engineering of N. oceanica for higher TAG content in nutrient-replete medium was accomplished by overexpressing DGTT5, a gene encoding the type II acyl-CoA:diacylglycerol acyltransferase 5. Combined with bio-flocculation, this approach led to increased production of TAG under nutrient-replete conditions (~ 10% of DW) compared to the wild type (~ 6% of DW). CONCLUSIONS: The combined use of M. elongata and N. oceanica with available genomes and genetic engineering tools for both species opens up new avenues to improve biofuel productivity and allows for the engineering of polyunsaturated fatty acids.

16.
Plant Cell ; 30(5): 1006-1022, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29666162

RESUMO

Chloroplast membranes with their unique lipid composition are crucial for photosynthesis. Maintenance of the chloroplast membranes requires finely tuned lipid anabolic and catabolic reactions. Despite the presence of a large number of predicted lipid-degrading enzymes in the chloroplasts, their biological functions remain largely unknown. Recently, we described PLASTID LIPASE1 (PLIP1), a plastid phospholipase A1 that contributes to seed oil biosynthesis. The Arabidopsis thaliana genome encodes two putative PLIP1 paralogs, which we designated PLIP2 and PLIP3. PLIP2 and PLIP3 are also present in the chloroplasts, but likely with different subplastid locations. In vitro analysis indicated that both are glycerolipid A1 lipases. In vivo, PLIP2 prefers monogalactosyldiacylglycerol as substrate and PLIP3 phosphatidylglycerol. Overexpression of PLIP2 or PLIP3 severely reduced plant growth and led to accumulation of the bioactive form of jasmonate and related oxylipins. Genetically blocking jasmonate perception restored the growth of the PLIP2/3-overexpressing plants. The expression of PLIP2 and PLIP3, but not PLIP1, was induced by abscisic acid (ABA), and plip1 plip2 plip3 triple mutants exhibited compromised oxylipin biosynthesis in response to ABA. The plip triple mutants also showed hypersensitivity to ABA. We propose that PLIP2 and PLIP3 provide a mechanistic link between ABA-mediated abiotic stress responses and oxylipin signaling.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética
17.
Plant Cell ; 30(2): 447-465, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29437989

RESUMO

Photosynthesis occurs in the thylakoid membrane, where the predominant lipid is monogalactosyldiacylglycerol (MGDG). As environmental conditions change, photosynthetic membranes have to adjust. In this study, we used a loss-of-function Chlamydomonas reinhardtii mutant deficient in the MGDG-specific lipase PGD1 (PLASTID GALACTOGLYCEROLIPID DEGRADATION1) to investigate the link between MGDG turnover, chloroplast ultrastructure, and the production of reactive oxygen species (ROS) in response to different adverse environmental conditions. The pgd1 mutant showed altered MGDG abundance and acyl composition and altered abundance of photosynthesis complexes, with an increased PSII/PSI ratio. Transmission electron microscopy showed hyperstacking of the thylakoid grana in the pgd1 mutant. The mutant also exhibited increased ROS production during N deprivation and high light exposure. Supplementation with bicarbonate or treatment with the photosynthetic electron transport blocker DCMU protected the cells against oxidative stress in the light and reverted chlorosis of pgd1 cells during N deprivation. Furthermore, exposure to stress conditions such as cold and high osmolarity induced the expression of PGD1, and loss of PGD1 in the mutant led to increased ROS production and inhibited cell growth. These findings suggest that PGD1 plays essential roles in maintaining appropriate thylakoid membrane composition and structure, thereby affecting growth and stress tolerance when cells are challenged under adverse conditions.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/enzimologia , Galactolipídeos/metabolismo , Lipase/metabolismo , Tilacoides/metabolismo , Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiologia , Cloroplastos/metabolismo , Transporte de Elétrons , Meio Ambiente , Lipase/genética , Fotossíntese , Estresse Fisiológico
18.
Science ; 358(6369): 1431-1434, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29242345

RESUMO

Necrosis and ethylene-inducing peptide 1-like (NLP) proteins constitute a superfamily of proteins produced by plant pathogenic bacteria, fungi, and oomycetes. Many NLPs are cytotoxins that facilitate microbial infection of eudicot, but not of monocot plants. Here, we report glycosylinositol phosphorylceramide (GIPC) sphingolipids as NLP toxin receptors. Plant mutants with altered GIPC composition were more resistant to NLP toxins. Binding studies and x-ray crystallography showed that NLPs form complexes with terminal monomeric hexose moieties of GIPCs that result in conformational changes within the toxin. Insensitivity to NLP cytolysins of monocot plants may be explained by the length of the GIPC head group and the architecture of the NLP sugar-binding site. We unveil early steps in NLP cytolysin action that determine plant clade-specific toxin selectivity.


Assuntos
Arabidopsis/parasitologia , Citotoxinas/metabolismo , Especificidade de Hospedeiro , Phytophthora/metabolismo , Doenças das Plantas/parasitologia , Pythium/metabolismo , Esfingolipídeos/metabolismo , Toxinas Biológicas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Citotoxinas/química , Etilenos/metabolismo , Esfingolipídeos/química
19.
Plant Cell ; 29(7): 1678-1696, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28687655

RESUMO

The lipid composition of thylakoid membranes inside chloroplasts is conserved from leaves to developing embryos. A finely tuned lipid assembly machinery is required to build these membranes during Arabidopsis thaliana development. Contrary to thylakoid lipid biosynthetic enzymes, the functions of most predicted chloroplast lipid-degrading enzymes remain to be elucidated. Here, we explore the biochemistry and physiological function of an Arabidopsis thylakoid membrane-associated lipase, PLASTID LIPASE1 (PLIP1). PLIP1 is a phospholipase A1 In vivo, PLIP1 hydrolyzes polyunsaturated acyl groups from a unique chloroplast-specific phosphatidylglycerol that contains 16:1 Δ3trans as its second acyl group. Thus far, a specific function of this 16:1 Δ3trans -containing phosphatidylglycerol in chloroplasts has remained elusive. The PLIP1 gene is highly expressed in seeds, and plip1 mutant seeds contain less oil and exhibit delayed germination compared with the wild type. Acyl groups released by PLIP1 are exported from the chloroplast, reincorporated into phosphatidylcholine, and ultimately enter seed triacylglycerol. Thus, 16:1 Δ3trans uniquely labels a small but biochemically active plastid phosphatidylglycerol pool in developing Arabidopsis embryos, which is subject to PLIP1 activity, thereby contributing a small fraction of the polyunsaturated fatty acids present in seed oil. We propose that acyl exchange involving thylakoid lipids functions in acyl export from plastids and seed oil biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Lipase/metabolismo , Fosfolipases A1/metabolismo , Óleos de Plantas/metabolismo , Plastídeos/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Lipase/genética , Fosfatidilcolinas/metabolismo , Fosfatidilgliceróis/metabolismo , Fosfolipases A1/genética , Filogenia , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Especificidade por Substrato , Triglicerídeos/metabolismo
20.
Plant Cell ; 29(6): 1500-1515, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28526713

RESUMO

The import of lipids into the chloroplast is essential for photosynthetic membrane biogenesis. This process requires an ABC transporter in the inner envelope membrane with three subunits, TRIGALACTOSYLDIACYLGLYCEROL (TGD) 1, 2, and 3, named after the oligogalactolipids that accumulate in the respective Arabidopsis thaliana mutants. Unlike Arabidopsis, in the model grass Brachypodium distachyon, chloroplast lipid biosynthesis is largely dependent on imported precursors, resulting in a characteristic difference in chloroplast lipid acyl composition between the two plants. Accordingly, Arabidopsis is designated as a 16:3 (acyl carbons:double bounds) plant and Brachypodium as an 18:3 plant. Repression of TGD1 (BdTGD1) in Brachypodium affected growth without triggering oligogalactolipid biosynthesis. Moreover, expressing BdTGD1 in the Arabidopsis tgd1-1 mutant restored some phenotypes but did not reverse oligogalactolipid biosynthesis. A 27-amino acid loop (L45) is solely responsible for the incomplete functioning of BdTGD1 in Arabidopsis tgd1-1 Coevolutionary analysis and coimmunoprecipitation assays showed that the TGD1 L45 loop interacts with the mycobacterial cell entry domain of TGD2. To explain the observed differences in oligogalactolipid biosynthesis between the two species, we suggest that excess monogalactosyldiacylglycerol derived from chloroplast-derived precursors in Arabidopsis tgd1-1 is converted into oligogalactolipids, a process absent from Brachypodium with reduced TGD1 levels, which assembles monogalactosyldiacylglycerol exclusively from imported precursors.


Assuntos
Brassicaceae/metabolismo , Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassicaceae/genética , Cloroplastos/genética , Galactolipídeos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/genética , Poaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...