Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 140(21): 2290-2299, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36026602

RESUMO

Native circulating blood platelets present with a discoid flat morphology maintained by a submembranous peripheral ring of microtubules, named marginal band. The functional importance of this particular shape is still debated, but it was initially hypothesized to facilitate platelet interaction with the injured vessel wall and to contribute to hemostasis. The importance of the platelet discoid morphology has since been questioned on the absence of clear bleeding tendency in mice lacking the platelet-specific ß1-tubulin isotype, which exhibits platelets with a thinner marginal band and an ovoid shape. Here, we generated a mouse model inactivated for ß1-tubulin and α4A-tubulin, an α-tubulin isotype strongly enriched in platelets. These mice present with fully spherical platelets completely devoid of a marginal band. In contrast to the single knockouts, the double deletion resulted in a severe bleeding defect in a tail-clipping assay, which was not corrected by increasing the platelet count to normal values by the thrombopoietin-analog romiplostim. In vivo, thrombus formation was almost abolished in a ferric chloride-injury model, with only a thin layer of loosely packed platelets, and mice were protected against death in a model of thromboembolism. In vitro, platelets adhered less efficiently and formed smaller-sized and loosely assembled aggregates when perfused over von Willebrand factor and collagen matrices. In conclusion, this study shows that blood platelets require 2 unique α- and ß-tubulin isotypes to acquire their characteristic discoid morphology. Lack of these 2 isotypes has a deleterious effect on flow-dependent aggregate formation and stability, leading to a severe bleeding disorder.


Assuntos
Transtornos da Coagulação Sanguínea , Tubulina (Proteína) , Camundongos , Animais , Plaquetas , Hemostasia , Microtúbulos , Fator de von Willebrand
2.
Transfusion ; 61(5): 1642-1653, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33580977

RESUMO

BACKGROUND: The production of platelet concentrates (PCs) is evolving, and their survival capacity needs in vivo evaluation. This requires that the transfused platelets (PLTs) be distinguished from those of the recipient. Labeling at various biotin (Bio) densities allows one to concurrently trace multiple PLT populations, as reported for red blood cells. STUDY DESIGN AND METHODS: A method is described to label human PLTs at two densities of Bio for future clinical trials. Injectable-grade PLTs were prepared in a sterile environment, using injectable-grade buffers and good manufacturing practices (GMP)-grade Sulfo-NHS-Biotin. Sulfo-NHS-Biotin concentrations were chosen to maintain PLT integrity and avoid potential alloimmunization while enabling the detection of circulating BioPLTs. The impact of biotinylation on human PLT recirculation was evaluated in vivo in a severe immunodeficient mouse model using ex vivo flow cytometry. RESULTS: BioPLTs labeled with 1.2 or 10 µg/ml Sulfo-NHS-Biotin displayed normal ultrastructure and retained aggregation and secretion capacity and normal expression of the main surface glycoproteins. The procedure avoided detrimental PLT activation or apoptosis signals. Transfused human BioPLT populations could be distinguished from one another and from unlabeled circulating mouse PLTs, and their survival was comparable to that of unlabeled human PLTs in the mouse model. CONCLUSIONS: Provided low Sulfo-NHS-Biotin concentrations (<10 µg/ml) are used, injectable-grade BioPLTs comply with safety regulations, conserve PLT integrity, and permit accurate in vivo detection. This alternative to radioisotopes, which allows one to follow different PLT populations in the same recipient, should be valuable when assessing new PC preparations and monitoring PLT survival in clinical research.


Assuntos
Biotina/análogos & derivados , Plaquetas/citologia , Rastreamento de Células , Succinimidas/análise , Animais , Biotina/análise , Biotinilação , Plaquetas/química , Plaquetas/ultraestrutura , Sobrevivência Celular , Feminino , Humanos , Camundongos , Contagem de Plaquetas , Transfusão de Plaquetas , Coloração e Rotulagem
3.
Blood Adv ; 3(15): 2368-2380, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31399401

RESUMO

The biogenesis of lysosome related organelles is defective in Hermansky-Pudlak syndrome (HPS), a disorder characterized by oculocutaneous albinism and platelet dense granule (DG) defects. The first animal model of HPS was the fawn-hooded rat, harboring a spontaneous mutation inactivating the small guanosine triphosphatase Rab38 This leads to coat color dilution associated with the absence of DGs and lung morphological defects. Another RAB38 mutant, the cht mouse, has normal DGs, which has raised controversy about the role of RAB38 in DG biogenesis. We show here that murine and human, but not rat, platelets also express the closely related RAB32. To elucidate the parts played by RAB32 and RAB38 in the biogenesis of DGs in vivo and their effects on platelet functions, we generated mice inactivated for Rab32, Rab38, and both genes. Single Rab38 inactivation mimicked cht mice, whereas single Rab32 inactivation had no effect in DGs, coat color, or lung morphology. By contrast, Rab32/38 double inactivation mimicked severe HPS, with strong coat and eye pigment dilution, some enlarged lung multilamellar bodies associated with a decrease in the number of DGs. These organelles were morphologically abnormal, decreased in number, and devoid of 5-hydroxytryptamine content. In line with the storage pool defect, platelet activation was affected, resulting in severely impaired thrombus growth and prolongation of the bleeding time. Overall, our study demonstrates the absence of impact of RAB38 or RAB32 single deficiency in platelet biogenesis and function resulting from full redundancy, and characterized a new mouse model mimicking HPS devoid of DG content.


Assuntos
Predisposição Genética para Doença , Síndrome de Hermanski-Pudlak/genética , Trombose/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Modelos Animais de Doenças , Estudos de Associação Genética/métodos , Síndrome de Hermanski-Pudlak/diagnóstico , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação , Fenótipo , Contagem de Plaquetas , Testes de Função Plaquetária , Ratos , Trombose/diagnóstico , Trombose/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
4.
Transfusion ; 55(9): 2207-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25856501

RESUMO

BACKGROUND: Platelets (PLTs) are currently stored at room temperature (RT) for 5 to 7 days. So far, there exists no validated method for the preparation and long-term storage of dehydrated PLTs suitable for transfusion after rehydration. In this study, a desiccation process, zeodration, was applied to PLTs. STUDY DESIGN AND METHODS: A complete procedure of dehydration at RT by zeodration was employed. Zeodrated human and mouse PLTs were characterized in vitro. Zeodrated mouse PLTs were transfused into clopidogrel-treated mice to evaluate their hemostatic properties. RESULTS: The optimal conditions for dehydration of PLTs at RT in a laboratory scale zeodrator were defined as 145 mbar and 20.2 ± 1.5 °C. The recovery rate was 85 ± 2% and the dryness of zeodrated PLTs (Z_PLTs) indicated that they were sufficiently stable for long-term storage. Rehydrated Z_PLTs were round, were not aggregated, and expressed the glycoproteins required for PLT function. Z_PLTs agglutinated in the presence of von Willebrand factor (VWF) and aggregated in response to thrombin or collagen independently of an active metabolism. In a flow system, Z_PLTs could adhere to VWF and form aggregates on a collagen matrix. Thrombin was generated at the surface of Z_PLTs as efficiently as on fresh PLTs. In clopidogrel-treated mice, which exhibited a severely prolonged bleeding time, continuous perfusion of Z_PLTs restored normal hemostasis. CONCLUSION: Zeodration represents a new strategy to prepare PLTs with partly preserved aggregative properties after storage and rehydration. Z_PLTs have potential hemostatic properties provided it is possible to improve their transfusion efficacy.


Assuntos
Plaquetas/metabolismo , Preservação de Sangue/métodos , Dessecação/métodos , Hemostasia , Adesividade Plaquetária , Animais , Plaquetas/citologia , Preservação de Sangue/instrumentação , Dessecação/instrumentação , Humanos , Camundongos , Trombina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...