Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Pediatr ; 11: 1128716, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873642

RESUMO

Background: Harlequin ichthyosis (HI) is a severe rare genetic disease that mainly affects the skin. Neonates with this disease are born with thick skin and large diamond-shaped plates covering most of their bodies. Affected neonates lose the ability to control dehydration and regulate temperature and are more susceptible to infections. They also face respiratory failure and feeding problems. These clinical symptoms are factors associated with high mortality rates of neonates with HI. Until now, there are still no effective treatments for HI patients and most patients die in the newborn period. Mutation in the ABCA12 gene, which encodes an adenosine triphosphate-binding cassette (ABC) transporter, has been demonstrated as the major cause of HI. Case presentation: In this study, we report the case who is one infant that was born prematurely at 32 gestational weeks with the whole body covered with thick plate-like scales of skin. The infant was severely infected with mild edema, multiple cracked skins full of the body, yellow discharge, and necrosis of fingers and toes. The infant was suspected to be affected by HI. Whole exome sequencing (WES) was performed as a tool for detecting the novel mutation in one prematurely born Vietnam infant with HI phenotype. And after that, the mutation was confirmed by the Sanger sequencing method in the patient and the members of his family. In this case, one novel mutation c.6353C > G (p.S2118X, Hom) in the ABCA12 gene, was detected in the patient. The mutation has not been reported in any HI patients previously. This mutation was also found in a heterozygous state in the members of the patient's family, including his parents, an older brother, and an older sister who are no symptoms. Conclusions: In this study, we identified a novel mutation in a Vietnamese patient with HI by whole exome sequencing. The results for the patient and the members of his family will be helpful in understanding the etiology of the disease, diagnosing carriers, assisting in genetic counseling, and emphasizing the need for DNA-based prenatal screening for families with a history of the disease.

2.
Neuroscience Bulletin ; (6): 1469-1480, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1010613

RESUMO

Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder characterized by deficits in social interactions and repetitive behaviors. Although hundreds of ASD risk genes, implicated in synaptic formation and transcriptional regulation, have been identified through human genetic studies, the East Asian ASD cohorts are still under-represented in genome-wide genetic studies. Here, we applied whole-exome sequencing to 369 ASD trios including probands and unaffected parents of Chinese origin. Using a joint-calling analytical pipeline based on GATK toolkits, we identified numerous de novo mutations including 55 high-impact variants and 165 moderate-impact variants, as well as de novo copy number variations containing known ASD-related genes. Importantly, combined with single-cell sequencing data from the developing human brain, we found that the expression of genes with de novo mutations was specifically enriched in the pre-, post-central gyrus (PRC, PC) and banks of the superior temporal (BST) regions in the human brain. By further analyzing the brain imaging data with ASD and healthy controls, we found that the gray volume of the right BST in ASD patients was significantly decreased compared to healthy controls, suggesting the potential structural deficits associated with ASD. Finally, we found a decrease in the seed-based functional connectivity between BST/PC/PRC and sensory areas, the insula, as well as the frontal lobes in ASD patients. This work indicated that combinatorial analysis with genome-wide screening, single-cell sequencing, and brain imaging data reveal the brain regions contributing to the etiology of ASD.


Assuntos
Humanos , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico , Sequenciamento do Exoma , Variações do Número de Cópias de DNA , População do Leste Asiático , Encéfalo/metabolismo , Mutação/genética , Predisposição Genética para Doença/genética
3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-444881

RESUMO

Coronavirus disease 2019 (COVID-19), which is triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, continues to threaten global public health. Developing a vaccine that only requires single immunization but provides long-term protection for the prevention and control of COVID-19 is important. Here, we developed an adeno-associated virus (AAV)-based vaccine expressing a stable receptor-binding domain (SRBD) protein. The vaccine requires only a single shot but provides effective neutralizing antibodies (NAbs) over 598 days in rhesus macaques (Macaca mulatta). Importantly, our results showed that the NAbs were kept in high level and long lasting against authentic wild-type SARS-CoV-2, Beta, Delta and Omicron variants using plaque reduction neutralization test. Of note, although we detected pre-existing AAV2/9 antibodies before immunization, the vaccine still induced high and effective NAbs against COVID-19 in rhesus macaques. AAV-SRBD immune serum also efficiently inhibited the binding of ACE2 with RBD in the SARS-CoV-2 B.1.1.7 (Alpha), B.1.351 (Beta), P.1/P.2 (Gamma), B.1.617.2 (Delta), B.1.617.1/3(Kappa), and C.37 (Lambda) variants. Thus, these data suggest that the vaccine has great potential to prevent the spread of SARS-CoV-2.

4.
Neuroscience Bulletin ; (6): 1091-1106, 2021.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-951962

RESUMO

Genetic composition plays critical roles in the pathogenesis of autism spectrum disorder (ASD). Especially, inherited and de novo intronic variants are often seen in patients with ASD. However, the biological significance of intronic variants is difficult to address. Here, among a Chinese ASD cohort, we identified a recurrent inherited intronic variant in the CHD7 gene, which is specifically enriched in East Asian populations. CHD7 has been implicated in numerous developmental disorders including CHARGE syndrome and ASD. To investigate whether the ASD-associated CHD7 intronic variant affects neural development, we established human embryonic stem cells carrying this variant using CRISPR/Cas9 methods and found that the level of CHD7 mRNA significantly decreased compared to control. Upon differentiation towards the forebrain neuronal lineage, we found that neural cells carrying the CHD7 intronic variant exhibited developmental delay and maturity defects. Importantly, we found that TBR1, a gene also implicated in ASD, was significantly increased in neurons carrying the CHD7 intronic variant, suggesting the intrinsic relevance among ASD genes. Furthermore, the morphological defects found in neurons carrying CHD7 intronic mutations were rescued by knocking down TBR1, indicating that TBR1 may be responsible for the defects in CHD7-related disorders. Finally, the CHD7 intronic variant generated three abnormal forms of transcripts through alternative splicing, which all exhibited loss-of-function in functional assays. Our study provides crucial evidence supporting the notion that the intronic variant of CHD7 is potentially an autism susceptibility site, shedding new light on identifying the functions of intronic variants in genetic studies of autism.

5.
Neuroscience Bulletin ; (6): 1271-1288, 2021.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-951957

RESUMO

Whether direct manipulation of Parkinson’s disease (PD) risk genes in the adult monkey brain can elicit a Parkinsonian phenotype remains an unsolved issue. Here, we used an adeno-associated virus serotype 9 (AAV9)-delivered CRISPR/Cas9 system to directly co-edit PINK1 and DJ-1 genes in the substantia nigras (SNs) of two monkey groups: an old group and a middle-aged group. After the operation, the old group exhibited all the classic PD symptoms, including bradykinesia, tremor, and postural instability, accompanied by key pathological hallmarks of PD, such as severe nigral dopaminergic neuron loss (>64%) and evident α-synuclein pathology in the gene-edited SN. In contrast, the phenotype of their middle-aged counterparts, which also showed clear PD symptoms and pathological hallmarks, were less severe. In addition to the higher final total PD scores and more severe pathological changes, the old group were also more susceptible to gene editing by showing a faster process of PD progression. These results suggested that both genetic and aging factors played important roles in the development of PD in the monkeys. Taken together, this system can effectively develop a large number of genetically-edited PD monkeys in a short time (6–10 months), and thus provides a practical transgenic monkey model for future PD studies.

6.
Neuroscience Bulletin ; (6): 1271-1288, 2021.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-922636

RESUMO

Whether direct manipulation of Parkinson's disease (PD) risk genes in the adult monkey brain can elicit a Parkinsonian phenotype remains an unsolved issue. Here, we used an adeno-associated virus serotype 9 (AAV9)-delivered CRISPR/Cas9 system to directly co-edit PINK1 and DJ-1 genes in the substantia nigras (SNs) of two monkey groups: an old group and a middle-aged group. After the operation, the old group exhibited all the classic PD symptoms, including bradykinesia, tremor, and postural instability, accompanied by key pathological hallmarks of PD, such as severe nigral dopaminergic neuron loss (>64%) and evident α-synuclein pathology in the gene-edited SN. In contrast, the phenotype of their middle-aged counterparts, which also showed clear PD symptoms and pathological hallmarks, were less severe. In addition to the higher final total PD scores and more severe pathological changes, the old group were also more susceptible to gene editing by showing a faster process of PD progression. These results suggested that both genetic and aging factors played important roles in the development of PD in the monkeys. Taken together, this system can effectively develop a large number of genetically-edited PD monkeys in a short time (6-10 months), and thus provides a practical transgenic monkey model for future PD studies.


Assuntos
Animais , Encéfalo , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Haplorrinos , Fenótipo , Proteínas Quinases/genética
7.
Neuroscience Bulletin ; (6): 1045-1057, 2019.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-776444

RESUMO

Early-onset epilepsy is a neurological abnormality in childhood, and it is especially common in the first 2 years after birth. Seizures in early life mostly result from structural or metabolic disorders in the brain, and the genetic causes of idiopathic seizures have been extensively investigated. In this study, we identified four missense mutations in the SETD1A gene (SET domain-containing 1A, histone lysine methyltransferase): three de novo mutations in three individuals and one inherited mutation in a four-generation family. Whole-exome sequencing indicated that all four of these mutations were responsible for the seizures. Mutations of SETD1A have been implicated in schizophrenia and developmental disorders, so we examined the role of the four mutations (R913C, Q269R, G1369R, and R1392H) in neural development. We found that their expression in mouse primary cortical neurons affected excitatory synapse development. Moreover, expression of the R913C mutation also affected the migration of cortical neurons in the mouse brain. We further identified two common genes (Neurl4 and Usp39) affected by mutations of SETD1A. These results suggested that the mutations of SETD1A play a fundamental role in abnormal synaptic function and the development of neurons, so they may be pathogenic factors for neurodevelopmental disorders.

8.
Protein & Cell ; (12): 489-500, 2016.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-757418

RESUMO

MicroRNAs (miRNAs) are critical for both development and function of the central nervous system. Significant evidence suggests that abnormal expression of miRNAs is associated with neurodevelopmental disorders. MeCP2 protein is an epigenetic regulator repressing or activating gene transcription by binding to methylated DNA. Both loss-of-function and gain-of-function mutations in the MECP2 gene lead to neurodevelopmental disorders such as Rett syndrome, autism and MECP2 duplication syndrome. In this study, we demonstrate that miR-130a inhibits neurite outgrowth and reduces dendritic spine density as well as dendritic complexity. Bioinformatics analyses, cell cultures and biochemical experiments indicate that miR-130a targets MECP2 and down-regulates MeCP2 protein expression. Furthermore, expression of the wild-type MeCP2, but not a loss-of-function mutant, rescues the miR-130a-induced phenotype. Our study uncovers the MECP2 gene as a previous unknown target for miR-130a, supporting that miR-130a may play a role in neurodevelopment by regulating MeCP2. Together with data from other groups, our work suggests that a feedback regulatory mechanism involving both miR-130a and MeCP2 may serve to ensure their appropriate expression and function in neural development.


Assuntos
Animais , Ratos , Dendritos , Genética , Metabolismo , Espinhas Dendríticas , Genética , Metabolismo , Regulação para Baixo , Fisiologia , Proteína 2 de Ligação a Metil-CpG , Genética , MicroRNAs , Genética , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...