Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 439: 108891, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797476

RESUMO

Acoustic trauma (AT) induced hearing loss elicits plasticity throughout the central auditory pathway, including at the level of the medial geniculate nucleus (MGN). Hearing loss also results in altered neuronal responses in the amygdala, which is involved in sensory gating at the level of the MGN. However, whether these altered responses in the amygdala affect sensory gating at the level of the MGN requires further evaluation. The current study aimed to investigate the effects of AT-induced hearing loss on the functional connectivity between the amygdala and the MGN. Male Sprague-Dawley rats were exposed to either sham (n = 5; no sound) or AT (n = 6; 16 kHz, 1 h, 124 dB SPL) under full anaesthesia. Auditory brainstem response (ABR) recordings were made to determine hearing thresholds. Two weeks post-exposure, extracellular recordings were used to assess the effect of electrical stimulation of the amygdala on tone-evoked (sham n = 22; AT n = 30) and spontaneous (sham n = 21; AT n = 29) activity of single neurons in the MGN. AT caused a large temporary and small permanent ABR threshold shift. Electrical stimulation of the amygdala induced differential effects (excitatory, inhibitory, or no effect) on both tone-evoked and spontaneous activity. In tone-evoked activity, electrical stimulation at 300 µA, maximum current, caused a significantly larger reduction in firing rate in AT animals compared to sham, due to an increase in the magnitude of inhibitory effects. In spontaneous activity, there was also a significantly larger magnitude of inhibitory effects following AT. The findings confirm that activation of the amygdala results in changes in MGN neuronal activity, and suggest the functional connectivity between the amygdala and the MGN is significantly altered following AT and subsequent hearing loss.


Assuntos
Perda Auditiva Provocada por Ruído , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Tonsila do Cerebelo , Estimulação Elétrica , Neurônios/fisiologia , Estimulação Acústica/métodos
2.
Brain Sci ; 12(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36009159

RESUMO

The auditory phantom sensation of tinnitus is associated with neural hyperactivity. Modulating this hyperactivity using repetitive transcranial magnetic stimulation (rTMS) has shown beneficial effects in human studies. Previously, we investigated rTMS in a tinnitus animal model and showed that rTMS over prefrontal cortex (PFC) attenuated tinnitus soon after treatment, likely via indirect effects on auditory pathways. Here, we explored the duration of these beneficial effects. Acoustic trauma was used to induce hearing loss and tinnitus in guinea pigs. Once tinnitus developed, high-frequency (20 Hz), high-intensity rTMS was applied over PFC for two weeks (weekdays only; 10 min/day). Behavioral signs of tinnitus were monitored for 6 weeks after treatment ended. Tinnitus developed in 77% of animals between 13 and 60 days post-trauma. rTMS treatment significantly reduced the signs of tinnitus at 1 week on a group level, but individual responses varied greatly at week 2 until week 6. Three (33%) of the animals showed the attenuation of tinnitus for the full 6 weeks, 45% for 1-4 weeks and 22% were non-responders. This study provides further support for the efficacy of high-frequency repetitive stimulation over the PFC as a therapeutic tool for tinnitus, but also highlights individual variation observed in human studies.

3.
Front Neurosci ; 15: 693935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366777

RESUMO

Tinnitus, a phantom auditory perception that can seriously affect quality of life, is generally triggered by cochlear trauma and associated with aberrant activity throughout the auditory pathways, often referred to as hyperactivity. Studies suggest that non-auditory structures, such as prefrontal cortex (PFC), may be involved in tinnitus generation, by affecting sensory gating in auditory thalamus, allowing hyperactivity to reach the cortex and lead to perception. Indeed, human studies have shown that repetitive transcranial magnetic stimulation (rTMS) of PFC can alleviate tinnitus. The current study investigated whether this therapeutic effect is achieved through inhibition of thalamic hyperactivity, comparing effects of two common clinical rTMS protocols with sham treatment, in a guinea pig tinnitus model. Animals underwent acoustic trauma and once tinnitus developed were treated with either intermittent theta burst stimulation (iTBS), 20 Hz rTMS, or sham rTMS (10 days, 10 min/day; weekdays only). Tinnitus was reassessed and extracellular recordings of spontaneous tonic and burst firing rates in auditory thalamus made. To verify effects in PFC, densities of neurons positive for calcium-binding proteins, calbindin and parvalbumin, were investigated using immunohistochemistry. Both rTMS protocols significantly reduced tinnitus compared to sham. However, spontaneous tonic firing decreased following 20 Hz stimulation and increased following iTBS in auditory thalamus. Burst rate was significantly different between 20 Hz and iTBS stimulation, and burst duration was increased only after 20 Hz treatment. Density of calbindin, but not parvalbumin positive neurons, was significantly increased in the most dorsal region of PFC indicating that rTMS directly affected PFC. Our results support the involvement of PFC in tinnitus modulation, and the therapeutic benefit of rTMS on PFC in treating tinnitus, but indicate this is not achieved solely by suppression of thalamic hyperactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA