Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(4): 1739-1752, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581206

RESUMO

The development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient-poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types. Mycorrhizal fungi colonized deglaciated areas very quickly (< 10 yr), with arbuscular mycorrhizal fungi tending to become more diverse through time compared to ectomycorrhizal fungi. Both alpha- and beta-diversity of arbuscular mycorrhizal fungi were significantly related to time since glacier retreat and plant communities, while microclimate and primary productivity were more important for ectomycorrhizal fungi. The richness and composition of mycorrhizal communities were also significantly explained by soil chemistry, highlighting the importance of microhabitat for community dynamics. The acceleration of ice melt and the modifications of microclimate forecasted by climate change scenarios are expected to impact the diversity of mycorrhizal partners. These changes could alter the interactions underlying biotic colonization and belowground-aboveground linkages, with multifaceted impacts on soil development and associated ecological processes.


Assuntos
Biodiversidade , Camada de Gelo , Micorrizas , Micorrizas/fisiologia , Camada de Gelo/microbiologia , Solo/química , Microclima , Microbiologia do Solo
2.
Glob Chang Biol ; 30(1): e17057, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273541

RESUMO

The worldwide retreat of glaciers is causing a faster than ever increase in ice-free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking. Nematodes are the most abundant soil animals, with keystone roles in ecosystem functioning, but the lack of global-scale studies limits our understanding of how the taxonomic and functional diversity of nematodes changes during the colonization of proglacial landscapes. We used environmental DNA metabarcoding to characterize nematode communities of 48 glacier forelands from five continents. We assessed how different facets of biodiversity change with the age of deglaciated terrains and tested the hypothesis that colonization patterns are different across forelands with different climatic conditions. Nematodes colonized ice-free areas almost immediately. Both taxonomic and functional richness quickly increased over time, but the increase in nematode diversity was modulated by climate, so that colonization started earlier in forelands with mild summer temperatures. Colder forelands initially hosted poor communities, but the colonization rate then accelerated, eventually leveling biodiversity differences between climatic regimes in the long term. Immediately after glacier retreat, communities were dominated by colonizer taxa with short generation time and r-ecological strategy but community composition shifted through time, with increased frequency of more persister taxa with K-ecological strategy. These changes mostly occurred through the addition of new traits instead of their replacement during succession. The effects of local climate on nematode colonization led to heterogeneous but predictable patterns around the world that likely affect soil communities and overall ecosystem development.


Assuntos
Ecossistema , Nematoides , Animais , Solo , Camada de Gelo , Biodiversidade
3.
Nat Plants ; 10(2): 256-267, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38233559

RESUMO

The mechanisms underlying plant succession remain highly debated. Due to the local scope of most studies, we lack a global quantification of the relative importance of species addition 'versus' replacement. We assessed the role of these processes in the variation (ß-diversity) of plant communities colonizing the forelands of 46 retreating glaciers worldwide, using both environmental DNA and traditional surveys. Our findings indicate that addition and replacement concur in determining community changes in deglaciated sites, but their relative importance varied over time. Taxa addition dominated immediately after glacier retreat, as expected in harsh environments, while replacement became more important for late-successional communities. These changes were aligned with total ß-diversity changes, which were more pronounced between early-successional communities than between late-successional communities (>50 yr since glacier retreat). Despite the complexity of community assembly during plant succession, the observed global pattern suggests a generalized shift from the dominance of facilitation and/or stochastic processes in early-successional communities to a predominance of competition later on.


Assuntos
Camada de Gelo , Plantas
4.
Sci Rep ; 13(1): 15936, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37743358

RESUMO

Worldwide, mountain glaciers are shrinking rapidly. Consequently, large areas are becoming available for the development of novel alpine ecosystems. These harsh environments, however, delay primary succession. In this study with a local community, we conducted an inclusion experiment to investigate whether Llama glama influences soils and vegetation primary succession following glacial retreat. At the foot of the Uruashraju glacier in the Cordillera Blanca, Peru (~ 4680 m.a.s.l.), we established four llama inclusion plots and four control plots that we studied from 2019 to 2022, 24-40 years after deglacierization. After three years, the llama plots had significantly increased soil organic carbon and soil nitrogen. In the llama plots, we found a large, significant increase in vascular plant cover (+ 57%) between the second and third years of experimentation, and we identified four new species that were not present in 2019. Our results suggest that Llama glama, through their latrine behavior and role as a seed disperser, enhances the primary succession and novel ecosystem formation in recently deglacierized landscapes. Our study provides scientific support that rewilding of native Andean camelids may favor adaptation to glacier retreat and inform conservation and management strategies in proglacial landscapes.


Assuntos
Camelídeos Americanos , Ecossistema , Animais , Peru , Carbono , Solo , Camada de Gelo
5.
Nat Commun ; 14(1): 5306, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652908

RESUMO

Landscapes nearby glaciers are disproportionally affected by climate change, but we lack detailed information on microclimate variations that can modulate the impacts of global warming on proglacial ecosystems and their biodiversity. Here, we use near-subsurface soil temperatures in 175 stations from polar, equatorial and alpine glacier forelands to generate high-resolution temperature reconstructions, assess spatial variability in microclimate change from 2001 to 2020, and estimate whether microclimate heterogeneity might buffer the severity of warming trends. Temporal changes in microclimate are tightly linked to broad-scale conditions, but the rate of local warming shows great spatial heterogeneity, with faster warming nearby glaciers and during the warm season, and an extension of the snow-free season. Still, most of the fine-scale spatial variability of microclimate is one-to-ten times larger than the temporal change experienced during the past 20 years, indicating the potential for microclimate to buffer climate change, possibly allowing organisms to withstand, at least temporarily, the effects of warming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...