Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(22): 4818-4833.e25, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37804831

RESUMO

MXRA8 is a receptor for chikungunya (CHIKV) and other arthritogenic alphaviruses with mammalian hosts. However, mammalian MXRA8 does not bind to alphaviruses that infect humans and have avian reservoirs. Here, we show that avian, but not mammalian, MXRA8 can act as a receptor for Sindbis, western equine encephalitis (WEEV), and related alphaviruses with avian reservoirs. Structural analysis of duck MXRA8 complexed with WEEV reveals an inverted binding mode compared with mammalian MXRA8 bound to CHIKV. Whereas both domains of mammalian MXRA8 bind CHIKV E1 and E2, only domain 1 of avian MXRA8 engages WEEV E1, and no appreciable contacts are made with WEEV E2. Using these results, we generated a chimeric avian-mammalian MXRA8 decoy-receptor that neutralizes infection of multiple alphaviruses from distinct antigenic groups in vitro and in vivo. Thus, different alphaviruses can bind MXRA8 encoded by different vertebrate classes with distinct engagement modes, which enables development of broad-spectrum inhibitors.


Assuntos
Alphavirus , Animais , Humanos , Febre de Chikungunya , Vírus Chikungunya/química , Mamíferos , Receptores Virais/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(7): e2215371120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749730

RESUMO

The ε4-allele variant of apolipoprotein E (ApoE4) is the strongest genetic risk factor for Alzheimer's disease, although it only differs from its neutral counterpart ApoE3 by a single amino acid substitution. While ApoE4 influences the formation of plaques and neurofibrillary tangles, the structural determinants of pathogenicity remain undetermined due to limited structural information. Previous studies have led to conflicting models of the C-terminal region positioning with respect to the N-terminal domain across isoforms largely because the data are potentially confounded by the presence of heterogeneous oligomers. Here, we apply a combination of single-molecule spectroscopy and molecular dynamics simulations to construct an atomically detailed model of monomeric ApoE4 and probe the effect of lipid association. Importantly, our approach overcomes previous limitations by allowing us to work at picomolar concentrations where only the monomer is present. Our data reveal that ApoE4 is far more disordered and extended than previously thought and retains significant conformational heterogeneity after binding lipids. Comparing the proximity of the N- and C-terminal domains across the three major isoforms (ApoE4, ApoE3, and ApoE2) suggests that all maintain heterogeneous conformations in their monomeric form, with ApoE2 adopting a slightly more compact ensemble. Overall, these data provide a foundation for understanding how ApoE4 differs from nonpathogenic and protective variants of the protein.


Assuntos
Apolipoproteína E4 , Apolipoproteínas E , Apolipoproteína E4/genética , Apolipoproteína E3/química , Apolipoproteína E2 , Conformação Proteica , Isoformas de Proteínas/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(4): e2212694120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36652481

RESUMO

Multidrug-resistant Acinetobacter baumannii infections are an urgent clinical problem and can cause difficult-to-treat nosocomial infections. During such infections, like catheter-associated urinary tract infections (CAUTI), A. baumannii rely on adhesive, extracellular fibers, called chaperone-usher pathway (CUP) pili for critical binding interactions. The A. baumannii uropathogenic strain, UPAB1, and the pan-European subclone II isolate, ACICU, use the CUP pili Abp1 and Abp2 (previously termed Cup and Prp, respectively) in tandem to establish CAUTIs, specifically to facilitate bacterial adherence and biofilm formation on the implanted catheter. Abp1 and Abp2 pili are tipped with two domain tip adhesins, Abp1D and Abp2D, respectively. We discovered that both adhesins bind fibrinogen, a critical host wound response protein that is released into the bladder upon catheterization and is subsequently deposited on the catheter. The crystal structures of the Abp1D and Abp2D receptor-binding domains were determined and revealed that they both contain a large, distally oriented pocket, which mediates binding to fibrinogen and other glycoproteins. Genetic, biochemical, and biophysical studies revealed that interactions with host proteins are governed by several critical residues in and along the edge of the binding pocket, one of which regulates the structural stability of an anterior loop motif. K34, located outside of the pocket but interacting with the anterior loop, also regulates the binding affinity of the protein. This study illuminates the mechanistic basis of the critical fibrinogen-coated catheter colonization step in A. baumannii CAUTI pathogenesis.


Assuntos
Acinetobacter baumannii , Infecções Urinárias , Humanos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Infecções Urinárias/microbiologia , Catéteres , Acinetobacter baumannii/genética , Fibrinogênio/metabolismo
4.
Nat Commun ; 13(1): 2269, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477718

RESUMO

Protein-protein and protein-nucleic acid interactions are often considered difficult drug targets because the surfaces involved lack obvious druggable pockets. Cryptic pockets could present opportunities for targeting these interactions, but identifying and exploiting these pockets remains challenging. Here, we apply a general pipeline for identifying cryptic pockets to the interferon inhibitory domain (IID) of Ebola virus viral protein 35 (VP35). VP35 plays multiple essential roles in Ebola's replication cycle but lacks pockets that present obvious utility for drug design. Using adaptive sampling simulations and machine learning algorithms, we predict VP35 harbors a cryptic pocket that is allosterically coupled to a key dsRNA-binding interface. Thiol labeling experiments corroborate the predicted pocket and mutating the predicted allosteric network supports our model of allostery. Finally, covalent modifications that mimic drug binding allosterically disrupt dsRNA binding that is essential for immune evasion. Based on these results, we expect this pipeline will be applicable to other proteins.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Vírus de DNA/genética , Ebolavirus/genética , Humanos , RNA de Cadeia Dupla/genética , Proteínas Virais/genética , Proteínas Virais Reguladoras e Acessórias/genética
5.
ACS Pharmacol Transl Sci ; 4(5): 1543-1555, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661073

RESUMO

The hormone oxytocin is commonly administered during childbirth to initiate and strengthen uterine contractions and prevent postpartum hemorrhage. However, patients have wide variation in the oxytocin dose required for a clinical response. To begin to uncover the mechanisms underlying this variability, we screened the 11 most prevalent missense genetic variants in the oxytocin receptor (OXTR) gene. We found that five variants, V45L, P108A, L206V, V281M, and E339K, significantly altered oxytocin-induced Ca2+ signaling or ß-arrestin recruitment and proceeded to assess the effects of these variants on OXTR trafficking to the cell membrane, desensitization, and internalization. The variants P108A and L206V increased OXTR localization to the cell membrane, whereas V281M and E339K caused OXTR to be retained inside the cell. We examined how the variants altered the balance between OXTR activation and desensitization, which is critical for appropriate oxytocin dosing. The E339K variant impaired OXTR activation, internalization, and desensitization to roughly equal extents. In contrast, V281M decreased OXTR activation but had no effect on internalization and desensitization. V45L and P108A did not alter OXTR activation but did impair ß-arrestin recruitment, internalization, and desensitization. Molecular dynamics simulations predicted that V45L and P108A prevent extension of the first intracellular loop of OXTR, thus inhibiting ß-arrestin binding. Overall, our data suggest mechanisms by which OXTR genetic variants could alter clinical response to oxytocin.

6.
Nat Commun ; 12(1): 3023, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021153

RESUMO

Understanding the structural determinants of a protein's biochemical properties, such as activity and stability, is a major challenge in biology and medicine. Comparing computer simulations of protein variants with different biochemical properties is an increasingly powerful means to drive progress. However, success often hinges on dimensionality reduction algorithms for simplifying the complex ensemble of structures each variant adopts. Unfortunately, common algorithms rely on potentially misleading assumptions about what structural features are important, such as emphasizing larger geometric changes over smaller ones. Here we present DiffNets, self-supervised autoencoders that avoid such assumptions, and automatically identify the relevant features, by requiring that the low-dimensional representations they learn are sufficient to predict the biochemical differences between protein variants. For example, DiffNets automatically identify subtle structural signatures that predict the relative stabilities of ß-lactamase variants and duty ratios of myosin isoforms. DiffNets should also be applicable to understanding other perturbations, such as ligand binding.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Proteínas/química , Proteínas/metabolismo , Algoritmos , Simulação por Computador , Simulação de Dinâmica Molecular , Miosinas , Conformação Proteica , Software
7.
Nat Chem ; 13(7): 651-659, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34031561

RESUMO

SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression and replication that depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate 0.1 seconds of the viral proteome. Our adaptive sampling simulations predict dramatic opening of the apo spike complex, far beyond that seen experimentally, explaining and predicting the existence of 'cryptic' epitopes. Different spike variants modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also discover dramatic conformational changes across the proteome, which reveal over 50 'cryptic' pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas.


Assuntos
COVID-19/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sítios de Ligação , COVID-19/transmissão , Simulação por Computador , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Proteoma , Glicoproteína da Espícula de Coronavírus/química
8.
Biophys J ; 120(14): 2880-2889, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33794150

RESUMO

Coronaviruses have caused multiple epidemics in the past two decades, in addition to the current COVID-19 pandemic that is severely damaging global health and the economy. Coronaviruses employ between 20 and 30 proteins to carry out their viral replication cycle, including infection, immune evasion, and replication. Among these, nonstructural protein 16 (Nsp16), a 2'-O-methyltransferase, plays an essential role in immune evasion. Nsp16 achieves this by mimicking its human homolog, CMTr1, which methylates mRNA to enhance translation efficiency and distinguish self from other. Unlike human CMTr1, Nsp16 requires a binding partner, Nsp10, to activate its enzymatic activity. The requirement of this binding partner presents two questions that we investigate in this manuscript. First, how does Nsp10 activate Nsp16? Although experimentally derived structures of the active Nsp16/Nsp10 complex exist, structures of inactive, monomeric Nsp16 have yet to be solved. Therefore, it is unclear how Nsp10 activates Nsp16. Using over 1 ms of molecular dynamics simulations of both Nsp16 and its complex with Nsp10, we investigate how the presence of Nsp10 shifts Nsp16's conformational ensemble to activate it. Second, guided by this activation mechanism and Markov state models, we investigate whether Nsp16 adopts inactive structures with cryptic pockets that, if targeted with a small molecule, could inhibit Nsp16 by stabilizing its inactive state. After identifying such a pocket in SARS-CoV2 Nsp16, we show that this cryptic pocket also opens in SARS-CoV1 and MERS but not in human CMTr1. Therefore, it may be possible to develop pan-coronavirus antivirals that target this cryptic pocket.

9.
Nat Commun ; 12(1): 1936, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782395

RESUMO

The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA-binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA-binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , RNA Viral/química , RNA Viral/metabolismo , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Sítios de Ligação , COVID-19/virologia , Dimerização , Simulação de Dinâmica Molecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Conformação Proteica , Domínios Proteicos
10.
bioRxiv ; 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33330873

RESUMO

Coronaviruses have caused multiple epidemics in the past two decades, in addition to the current COVID-19 pandemic that is severely damaging global health and the economy. Coronaviruses employ between twenty and thirty proteins to carry out their viral replication cycle including infection, immune evasion, and replication. Among these, nonstructural protein 16 (Nsp16), a 2'-O-methyltransferase, plays an essential role in immune evasion. Nsp16 achieves this by mimicking its human homolog, CMTr1, which methylates mRNA to enhance translation efficiency and distinguish self from other. Unlike human CMTr1, Nsp16 requires a binding partner, Nsp10, to activate its enzymatic activity. The requirement of this binding partner presents two questions that we investigate in this manuscript. First, how does Nsp10 activate Nsp16? While experimentally-derived structures of the active Nsp16/Nsp10 complex exist, structures of inactive, monomeric Nsp16 have yet to be solved. Therefore, it is unclear how Nsp10 activates Nsp16. Using over one millisecond of molecular dynamics simulations of both Nsp16 and its complex with Nsp10, we investigate how the presence of Nsp10 shifts Nsp16's conformational ensemble in order to activate it. Second, guided by this activation mechanism and Markov state models (MSMs), we investigate if Nsp16 adopts inactive structures with cryptic pockets that, if targeted with a small molecule, could inhibit Nsp16 by stabilizing its inactive state. After identifying such a pocket in SARS-CoV-2 Nsp16, we show that this cryptic pocket also opens in SARS-CoV-1 and MERS, but not in human CMTr1. Therefore, it may be possible to develop pan-coronavirus antivirals that target this cryptic pocket. STATEMENT OF SIGNIFICANCE: Coronaviruses are a major threat to human health. These viruses employ molecular machines, called proteins, to infect host cells and replicate. Characterizing the structure and dynamics of these proteins could provide a basis for designing small molecule antivirals. In this work, we use computer simulations to understand the moving parts of an essential SARS-CoV-2 protein, understand how a binding partner turns it on and off, and identify a novel pocket that antivirals could target to shut this protein off. The pocket is also present in other coronaviruses but not in the related human protein, so it could be a valuable target for pan-coronavirus antivirals.

11.
J R Soc Interface ; 17(170): 20200126, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900299

RESUMO

Equilibria, or fixed points, play an important role in dynamical systems across various domains, yet finding them can be computationally challenging. Here, we show how to efficiently compute all equilibrium points of discrete-valued, discrete-time systems on sparse networks. Using graph partitioning, we recursively decompose the original problem into a set of smaller, simpler problems that are easy to compute, and whose solutions combine to yield the full equilibrium set. This makes it possible to find the fixed points of systems on arbitrarily large networks meeting certain criteria. This approach can also be used without computing the full equilibrium set, which may grow very large in some cases. For example, one can use this method to check the existence and total number of equilibria, or to find equilibria that are optimal with respect to a given cost function. We demonstrate the potential capabilities of this approach with examples in two scientific domains: computing the number of fixed points in brain networks and finding the minimal energy conformations of lattice-based protein folding models.


Assuntos
Algoritmos , Dobramento de Proteína
12.
bioRxiv ; 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32637963

RESUMO

SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and replication, which depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate an unprecedented 0.1 seconds of the viral proteome. Our simulations capture dramatic opening of the apo Spike complex, far beyond that seen experimentally, which explains and successfully predicts the existence of 'cryptic' epitopes. Different Spike homologues modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also observe dramatic conformational changes across the proteome, which reveal over 50 'cryptic' pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas.

13.
Elife ; 92020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32479265

RESUMO

Myosin motor domains perform an extraordinary diversity of biological functions despite sharing a common mechanochemical cycle. Motors are adapted to their function, in part, by tuning the thermodynamics and kinetics of steps in this cycle. However, it remains unclear how sequence encodes these differences, since biochemically distinct motors often have nearly indistinguishable crystal structures. We hypothesized that sequences produce distinct biochemical phenotypes by modulating the relative probabilities of an ensemble of conformations primed for different functional roles. To test this hypothesis, we modeled the distribution of conformations for 12 myosin motor domains by building Markov state models (MSMs) from an unprecedented two milliseconds of all-atom, explicit-solvent molecular dynamics simulations. Comparing motors reveals shifts in the balance between nucleotide-favorable and nucleotide-unfavorable P-loop conformations that predict experimentally measured duty ratios and ADP release rates better than sequence or individual structures. This result demonstrates the power of an ensemble perspective for interrogating sequence-function relationships.


Assuntos
Miosinas/química , Miosinas/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Fenômenos Biomecânicos/genética , Galinhas , Humanos , Cinética , Simulação de Dinâmica Molecular , Miosinas/genética , Conformação Proteica , Domínios Proteicos , Termodinâmica
14.
bioRxiv ; 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32587966

RESUMO

The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.

15.
Sci Signal ; 13(615)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964804

RESUMO

Stimulation of plasma membrane receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR), locally increases the abundance of reactive oxygen species (ROS). These ROS then oxidize cysteine residues in proteins to potentiate downstream signaling. Spatial confinement of ROS is an important regulatory mechanism of redox signaling that enables the stimulation of different RTKs to oxidize distinct sets of downstream proteins. To uncover additional mechanisms that specify cysteines that are redox regulated by EGF stimulation, we performed time-resolved quantification of the EGF-dependent oxidation of 4200 cysteine sites in A431 cells. Fifty-one percent of cysteines were statistically significantly oxidized by EGF stimulation. Furthermore, EGF induced three distinct spatiotemporal patterns of cysteine oxidation in functionally organized protein networks, consistent with the spatial confinement model. Unexpectedly, protein crystal structure analysis and molecular dynamics simulations indicated widespread redox regulation of cryptic cysteine residues that are solvent exposed only upon changes in protein conformation. Phosphorylation and increased flux of nucleotide substrates served as two distinct modes by which EGF specified the cryptic cysteine residues that became solvent exposed and redox regulated. Because proteins that are structurally regulated by different RTKs or cellular perturbations are largely unique, these findings suggest that solvent exposure and redox regulation of cryptic cysteine residues contextually delineate redox signaling networks.


Assuntos
Cisteína/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cristalografia por Raios X , Cisteína/química , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/química , Humanos , Simulação de Dinâmica Molecular , Oxirredução/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
16.
Cell Rep ; 30(1): 153-163.e5, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914382

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus with 12%-30% case mortality rates and is related to the Heartland virus (HRTV) identified in the United States. Together, SFTSV and HRTV are emerging segmented, negative-sense RNA viral (sNSV) pathogens with potential global health impact. Here, we characterize the amino-terminal cap-snatching endonuclease domain of SFTSV polymerase (L) and solve a 2.4-Å X-ray crystal structure. While the overall structure is similar to those of other cap-snatching sNSV endonucleases, differences near the C terminus of the SFTSV endonuclease suggest divergence in regulation. Influenza virus endonuclease inhibitors, including the US Food and Drug Administration (FDA) approved Baloxavir (BXA), inhibit the endonuclease activity in in vitro enzymatic assays and in cell-based studies. BXA displays potent activity with a half maximal inhibitory concentration (IC50) of ∼100 nM in enzyme inhibition and an EC50 value of ∼250 nM against SFTSV and HRTV in plaque assays. Together, our data support sNSV endonucleases as an antiviral target.


Assuntos
Antivirais/farmacologia , Endonucleases/química , Phlebovirus/efeitos dos fármacos , Phlebovirus/enzimologia , Animais , Antivirais/química , Cátions Bivalentes/farmacologia , Linhagem Celular , Sequência Conservada , Cristalografia por Raios X , Dibenzotiepinas/química , Dibenzotiepinas/farmacologia , Endonucleases/antagonistas & inibidores , Endonucleases/metabolismo , Humanos , Modelos Moleculares , Morfolinas/química , Morfolinas/farmacologia , Domínios Proteicos , Estrutura Secundária de Proteína , Piridonas/química , Piridonas/farmacologia , Triazinas/química , Triazinas/farmacologia
17.
Biophys J ; 116(5): 818-830, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30744991

RESUMO

Proteins are dynamic molecules that undergo conformational changes to a broad spectrum of different excited states. Unfortunately, the small populations of these states make it difficult to determine their structures or functional implications. Computer simulations are an increasingly powerful means to identify and characterize functionally relevant excited states. However, this advance has uncovered a further challenge: it can be extremely difficult to identify the most salient features of large simulation data sets. We reasoned that many functionally relevant conformational changes are likely to involve large, cooperative changes to the surfaces that are available to interact with potential binding partners. To examine this hypothesis, we introduce a method that returns a prioritized list of potentially functional conformational changes by segmenting protein structures into clusters of residues that undergo cooperative changes in their solvent exposure, along with the hierarchy of interactions between these groups. We term these groups exposons to distinguish them from other types of clusters that arise in this analysis and others. We demonstrate, using three different model systems, that this method identifies experimentally validated and functionally relevant conformational changes, including conformational switches, allosteric coupling, and cryptic pockets. Our results suggest that key functional sites are hubs in the network of exposons. As a further test of the predictive power of this approach, we apply it to discover cryptic allosteric sites in two different ß-lactamase enzymes that are widespread sources of antibiotic resistance. Experimental tests confirm our predictions for both systems. Importantly, we provide the first evidence, to our knowledge, for a cryptic allosteric site in CTX-M-9 ß-lactamase. Experimentally testing this prediction did not require any mutations and revealed that this site exerts the most potent allosteric control over activity of any pockets found in ß-lactamases to date. Discovery of a similar pocket that was previously overlooked in the well-studied TEM-1 ß-lactamase demonstrates the utility of exposons.


Assuntos
Sítio Alostérico , Modelos Moleculares , Proteínas/química , Solventes/química , Proteína Receptora de AMP Cíclico/química , Proteínas de Escherichia coli/química , Conformação Proteica , beta-Lactamases/química
18.
J Chem Theory Comput ; 14(11): 5459-5475, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30240203

RESUMO

Interest in atomically detailed simulations has grown significantly with recent advances in computational hardware and Markov state modeling (MSM) methods, yet outstanding questions remain that hinder their widespread adoption. Namely, how do alternative sampling strategies explore conformational space and how might this influence predictions generated from the data? Here, we seek to answer these questions for four commonly used sampling methods: (1) a single long simulation, (2) many short simulations run in parallel, (3) adaptive sampling, and (4) our recently developed goal-oriented sampling algorithm, FAST. We first develop a theoretical framework for analytically calculating the probability of discovering select states on simple landscapes, where we uncover the drastic effects of varying the number and length of simulations. We then use kinetic Monte Carlo simulations on a variety of physically inspired landscapes to characterize the probability of discovering particular states and transition pathways for each of the four methods. Consistently, we find that FAST simulations discover each target state with the highest probability, while traversing realistic pathways. Furthermore, we uncover the potential pathology that short parallel simulations sometimes predict an incorrect transition pathway by crossing large energy barriers that long simulations would typically circumnavigate. We refer to this pathology as "pathway tunneling". To protect against this phenomenon when using adaptive-sampling and FAST simulations, we introduce the FAST-string method. This method enhances sampling along the highest-flux transition paths to refine an MSMs transition probabilities and discriminate between competing pathways. Additionally, we compare the performance of a variety of MSM estimators in describing accurate thermodynamics and kinetics. For adaptive sampling, we recommend simply normalizing the transition counts out of each state after adding small pseudocounts to avoid creating sources or sinks. Lastly, we evaluate whether our insights from simple landscapes hold for all-atom molecular dynamics simulations of the folding of the λ-repressor protein. Remarkably, we find that FAST-contacts predicts the same folding pathway as a set of long simulations but with orders of magnitude less simulation time.

19.
PLoS One ; 12(6): e0178678, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28570708

RESUMO

Allosteric drugs, which bind to proteins in regions other than their main ligand-binding or active sites, make it possible to target proteins considered "undruggable" and to develop new therapies that circumvent existing resistance. Despite growing interest in allosteric drug discovery, rational design is limited by a lack of sufficient structural information about alternative binding sites in proteins. Previously, we used Markov State Models (MSMs) to identify such "cryptic pockets," and here we describe a method for identifying compounds that bind in these cryptic pockets and modulate enzyme activity. Experimental tests validate our approach by revealing both an inhibitor and two activators of TEM ß-lactamase (TEM). To identify hits, a library of compounds is first virtually screened against either the crystal structure of a known cryptic pocket or an ensemble of structures containing the same cryptic pocket that is extracted from an MSM. Hit compounds are then screened experimentally and characterized kinetically in individual assays. We identify three hits, one inhibitor and two activators, demonstrating that screening for binding to allosteric sites can result in both positive and negative modulation. The hit compounds have modest effects on TEM activity, but all have higher affinities than previously identified inhibitors, which bind the same cryptic pocket but were found, by chance, via a computational screen targeting the active site. Site-directed mutagenesis of key contact residues predicted by the docking models is used to confirm that the compounds bind in the cryptic pocket as intended. Because hit compounds are identified from docking against both the crystal structure and structures from the MSM, this platform should prove suitable for many proteins, particularly targets whose crystal structures lack obvious druggable pockets, and for identifying both inhibitory and activating small-molecule modulators.


Assuntos
Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas , Regulação Alostérica , Simulação de Acoplamento Molecular , Ligação Proteica , beta-Lactamases/metabolismo
20.
ACS Cent Sci ; 3(12): 1311-1321, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29296672

RESUMO

Protein stabilization is fundamental to enzyme function and evolution, yet understanding the determinants of a protein's stability remains a challenge. This is largely due to a shortage of atomically detailed models for the ensemble of relevant protein conformations and their relative populations. For example, the M182T substitution in TEM ß-lactamase, an enzyme that confers antibiotic resistance to bacteria, is stabilizing but the precise mechanism remains unclear. Here, we employ Markov state models (MSMs) to uncover how M182T shifts the distribution of different structures that TEM adopts. We find that M182T stabilizes a helix that is a key component of a domain interface. We then predict the effects of other mutations, including a novel stabilizing mutation, and experimentally test our predictions using a combination of stability measurements, crystallography, NMR, and in vivo measurements of bacterial fitness. We expect our insights and methodology to provide a valuable foundation for protein design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...