Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Energy Fuels ; 36(23): 14292-14303, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36483577

RESUMO

Organic solid wastes such as sewage sludge are potential feedstocks for the production of drop-in biofuels. Hydrothermal liquefaction (HTL) is a process that converts the wet sewage sludge into an organic biocrude. To fulfill industrial fuel standards, the considerable heteroatom content of the biocrude needs to be lowered by downstream processes. Nitrogen (N) contained in several compounds poses a challenge and yet, the complex chemical composition of HTL-biocrude samples has hindered detailed analysis and understanding. In particular, N-containing aromatic substances appear very persistent in biocrude. In the present work, two alkaline (NaHCO3 and NaOH) and one acidic (HCL) aqueous solutions were subsequently applied to extract and recover polar N-containing compounds from the biocrude matrix with an N-content of 3.8 wt %. Gas chromatography-mass spectrometry, atmospheric pressure chemical ionization in positive mode, and Fourier transform ion cyclotron resonance mass spectrometry were applied for their characterization and results show that a large share of N-compounds with an aromatic, pyridinic structure was found in the acidic extracted fraction with an N-content of 9.5 wt %. Aliphatic N-compounds were less affected by the separation and ended in the residual fraction. N-compounds with multiple oxygen functionalizations are enriched in the alkaline extracted fractions. This showed that N-compounds with an aromatic structure are strongly affected by polar groups and can potentially be extracted by downstream processes with appropriate solvents.

2.
Membranes (Basel) ; 12(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35323730

RESUMO

This study aims to evaluate the application of ceramic ultrafiltration membranes in the crossflow mode for the separation of particles and oil in water emulsions (free oil droplets and micelles) from hydrothermal-liquefaction wastewater (HTL-WW) from the hydrothermal liquefaction of municipal sewage sludge. The experiments were carried out using one-channel TiO2 membranes with pore sizes of 30, 10 and 5 nm. The results showed that the highest stable permeability could be achieved with a membrane-pore size of 10 nm, which experienced less fouling, especially through pore blockage, in comparison to the two other pore sizes. Instead of observing an increase in the permeability, the application of a higher feed temperature as well as backwash cycles led to a clear increase in irreversible fouling due to the presence of surfactants in the HTL-WW. Among several physical and chemical cleaning methods, alkaline cleaning at pH 12 proved to be the most efficient in removing fouling and maintaining stable performance on a long-term basis. Ceramic-membrane ultrafiltration can be considered as an adequate first-stage treatment of real HTL wastewater.

3.
Materials (Basel) ; 12(10)2019 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-31130674

RESUMO

This study investigates the production of bio-based carbon materials for energy storage and conversion devices based on two different vineyard residues (pruning, pomace) and cellulose as a model biomass. Three different char categories were produced via pyrolysis at 900 °C for 2 h (biochars, BC), hydrothermal carbonization (HTC) (at 220, 240 or 260 °C) with different reaction times (60, 120 or 300 min) (hydrochars, HC), or HTC plus pyrolysis (pyrolyzed hydrochars, PHC). Physicochemical, structural, and electrical properties of the chars were assessed by elemental and proximate analysis, gas adsorption surface analysis with N2 and CO2, compression ratio, bulk density, and electrical conductivity (EC) measurements. Thermogravimetric analysis allowed conclusions to be made about the thermochemical conversion processes. Taking into consideration the required material properties for the application in electrochemical double-layer capacitors (EDLC) or in a direct carbon fuel cell (DCFC), the suitability of the obtained materials for each application is discussed. Promising materials with surface areas up to 711 m2 g-1 and presence of microporosity have been produced. It is shown that HTC plus pyrolysis from cellulose and pruning leads to better properties regarding aromatic carbon structures, carbon content (>90 wt.%), EC (up to 179 S m-1), and porosity compared to one-step treatments, resulting in suitable materials for an EDLC application. The one-step pyrolysis process and the resulting chars with lower carbon contents and low EC values between 51 and 56 S m-1 are preferred for DCFC applications. To conclude, biomass potentials can be exploited by producing tailored biomass-derived carbon materials via different carbonization processes for a wide range of applications in the field of energy storage and conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...