Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 11: 325, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319348

RESUMO

Bdnf exon-IV and exon-VI transcripts are driven by neuronal activity and are involved in pathologies related to sleep, fear or memory disorders. However, how their differential transcription translates activity changes into long-lasting network changes is elusive. Aiming to trace specifically the network controlled by exon-IV and -VI derived BDNF during activity-dependent plasticity changes, we generated a transgenic reporter mouse for B DNF- l ive- e xon- v isualization (BLEV), in which expression of Bdnf exon-IV and -VI can be visualized by co-expression of CFP and YFP. CFP and YFP expression was differentially activated and targeted in cell lines, primary cultures and BLEV reporter mice without interfering with BDNF protein synthesis. CFP and YFP expression, moreover, overlapped with BDNF protein expression in defined hippocampal neuronal, glial and vascular locations in vivo. So far, activity-dependent BDNF cannot be explicitly monitored independent of basal BDNF levels. The BLEV reporter mouse therefore provides a new model, which can be used to test whether stimulus-induced activity-dependent changes in BDNF expression are instrumental for long-lasting plasticity modifications.

2.
Front Mol Neurosci ; 11: 260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127717

RESUMO

Activity-dependent BDNF (brain-derived neurotrophic factor) expression is hypothesized to be a cue for the context-specificity of memory formation. So far, activity-dependent BDNF cannot be explicitly monitored independently of basal BDNF levels. We used the BLEV ( B DNF- live-exon- visualization) reporter mouse to specifically detect activity-dependent usage of Bdnf exon-IV and -VI promoters through bi-cistronic co-expression of CFP and YFP, respectively. Enriching acoustic stimuli led to improved peripheral and central auditory brainstem responses, increased Schaffer collateral LTP, and enhanced performance in the Morris water maze. Within the brainstem, neuronal activity was increased and accompanied by a trend for higher expression levels of Bdnf exon-IV-CFP and exon-VI-YFP transcripts. In the hippocampus BDNF transcripts were clearly increased parallel to changes in parvalbumin expression and were localized to specific neurons and capillaries. Severe acoustic trauma, in contrast, elevated neither Bdnf transcript levels, nor auditory responses, parvalbumin or LTP. Together, this suggests that critical sensory input is essential for recruitment of activity-dependent auditory-specific BDNF expression that may shape network adaptation.

3.
Cell Physiol Biochem ; 47(4): 1509-1532, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29940568

RESUMO

BACKGROUND/AIMS: From invertebrates to mammals, Gαi proteins act together with their common binding partner Gpsm2 to govern cell polarization and planar organization in virtually any polarized cell. Recently, we demonstrated that Gαi3-deficiency in pre-hearing murine cochleae pointed to a role of Gαi3 for asymmetric migration of the kinocilium as well as the orientation and shape of the stereociliary ("hair") bundle, a requirement for the progression of mature hearing. We found that the lack of Gαi3 impairs stereociliary elongation and hair bundle shape in high-frequency cochlear regions, linked to elevated hearing thresholds for high-frequency sound. How these morphological defects translate into hearing phenotypes is not clear. METHODS: Here, we studied global and conditional Gnai3 and Gnai2 mouse mutants deficient for either one or both Gαi proteins. Comparative analyses of global versus Foxg1-driven conditional mutants that mainly delete in the inner ear and telencephalon in combination with functional tests were applied to dissect essential and redundant functions of different Gαi isoforms and to assign specific defects to outer or inner hair cells, the auditory nerve, satellite cells or central auditory neurons. RESULTS: Here we report that lack of Gαi3 but not of the ubiquitously expressed Gαi2 elevates hearing threshold, accompanied by impaired hair bundle elongation and shape in high-frequency cochlear regions. During the crucial reprogramming of the immature inner hair cell (IHC) synapse into a functional sensory synapse of the mature IHC deficiency for Gαi2 or Gαi3 had no impact. In contrast, double-deficiency for Gαi2 and Gαi3 isoforms results in abnormalities along the entire tonotopic axis including profound deafness associated with stereocilia defects. In these mice, postnatal IHC synapse maturation is also impaired. In addition, the analysis of conditional versus global Gαi3-deficient mice revealed that the amplitude of ABR wave IV was disproportionally elevated in comparison to ABR wave I indicating that Gαi3 is selectively involved in generation of neural gain during auditory processing. CONCLUSION: We propose a so far unrecognized complexity of isoform-specific and overlapping Gαi protein functions particular during final differentiation processes.


Assuntos
Proteínas de Transporte/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Audição/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Fatores de Transcrição Forkhead/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Células Ciliadas Auditivas Internas/citologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética
4.
FASEB J ; 32(6): 3005-3019, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401591

RESUMO

Systemic corticosteroids have been the mainstay of treatment for various hearing disorders for more than 30 yr. Accordingly, numerous studies have described glucocorticoids (GCs) and stressors to be protective in the auditory organ against damage associated with a variety of health conditions, including noise exposure. Conversely, stressors are also predictive risk factors for hearing disorders. How both of these contrasting stress actions are linked has remained elusive. Here, we demonstrate that higher corticosterone levels during acoustic trauma in female rats is highly correlated with a decline of auditory fiber responses in high-frequency cochlear regions, and that hearing thresholds and the outer hair cell functions (distortion products of otoacoustic emissions) are left unaffected. Moreover, when GC receptor (GR) or mineralocorticoid receptor (MR) activation was antagonized by mifepristone or spironolactone, respectively, GR, but not MR, inhibition significantly and permanently attenuated trauma-induced effects on auditory fiber responses, including inner hair cell ribbon loss and related reductions of early and late auditory brainstem responses. These findings strongly imply that higher corticosterone stress levels profoundly impair auditory nerve processing, which may influence central auditory acuity. These changes are likely GR mediated as they are prevented by mifepristone.-Singer, W., Kasini, K., Manthey, M., Eckert, P., Armbruster, P., Vogt, M. A., Jaumann, M., Dotta, M., Yamahara, K., Harasztosi, C., Zimmermann, U., Knipper, M., Rüttiger, L. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats.


Assuntos
Nervo Coclear/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Glucocorticoides/antagonistas & inibidores , Transtornos da Audição/fisiopatologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Mifepristona/farmacologia , Animais , Cóclea/metabolismo , Cóclea/patologia , Cóclea/fisiopatologia , Nervo Coclear/metabolismo , Nervo Coclear/patologia , Feminino , Glucocorticoides/efeitos adversos , Glucocorticoides/farmacologia , Transtornos da Audição/induzido quimicamente , Transtornos da Audição/tratamento farmacológico , Transtornos da Audição/metabolismo , Perda Auditiva Provocada por Ruído/induzido quimicamente , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/metabolismo , Ratos , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo
5.
Mol Pharmacol ; 92(4): 375-388, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28874607

RESUMO

Nitric oxide (NO) activates the NO-sensitive soluble guanylate cyclase (NO-GC, sGC) and triggers intracellular signaling pathways involving cGMP. For survival of cochlear hair cells and preservation of hearing, NO-mediated cascades have both protective and detrimental potential. Here we examine the cochlear function of mice lacking one of the two NO-sensitive guanylate cyclase isoforms [NO-GC1 knockout (KO) or NO-GC2 KO]. The deletion of NO-GC1 or NO-GC2 did not influence electromechanical outer hair cell (OHC) properties, as measured by distortion product otoacoustic emissions, neither before nor after noise exposure, nor were click- or noise-burst-evoked auditory brainstem response thresholds different from controls. Yet inner hair cell (IHC) ribbons and auditory nerve responses showed significantly less deterioration in NO-GC1 KO and NO-GC2 KO mice after noise exposure. Consistent with a selective role of NO-GC in IHCs, NO-GC ß1 mRNA was found in isolated IHCs but not in OHCs. Using transgenic mice expressing the fluorescence resonance energy transfer-based cGMP biosensor cGi500, NO-induced elevation of cGMP was detected in real-time in IHCs but not in OHCs. Pharmacologic long-term treatment with a NO-GC stimulator altered auditory nerve responses but did not affect OHC function and hearing thresholds. Interestingly, NO-GC stimulation exacerbated the loss of auditory nerve response in aged animals but attenuated the loss in younger animals. We propose NO-GC2 and, to some degree, NO-GC1 as targets for early pharmacologic prevention of auditory fiber loss (synaptopathy). Both isoforms provide selective benefits for hearing function by maintaining the functional integrity of auditory nerve fibers in early life rather than at old age.


Assuntos
Guanilato Ciclase/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Óxido Nítrico/metabolismo , Ruído/efeitos adversos , Receptores de Superfície Celular/metabolismo , Animais , Feminino , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Morfolinas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Receptores de Superfície Celular/agonistas , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia
6.
ORL J Otorhinolaryngol Relat Spec ; 79(1-2): 93-111, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28231578

RESUMO

In medicine, biomarkers are a metric for disease state. More generally, a biomarker is anything that can be used as an indicator for a particular disease state or any physiological state of an organism. Here, we introduce functional and molecular biomarkers that are useful for categorizing defined subtypes of hearing disorder, which can help to selectively trace a particular dysfunction of the inner ear and the auditory pathway to disease.


Assuntos
Biomarcadores/sangue , Transtornos da Audição/sangue , Transtornos da Audição/diagnóstico , Animais , Audiometria , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Emissões Otoacústicas Espontâneas , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Índice de Gravidade de Doença
7.
Neurobiol Aging ; 44: 173-184, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27318145

RESUMO

A dramatic shift in societal demographics will lead to rapid growth in the number of older people with hearing deficits. Poorer performance in suprathreshold speech understanding and temporal processing with age has been previously linked with progressing inner hair cell (IHC) synaptopathy that precedes age-dependent elevation of auditory thresholds. We compared central sound responsiveness after acoustic trauma in young, middle-aged, and older rats. We demonstrate that IHC synaptopathy progresses from middle age onward and hearing threshold becomes elevated from old age onward. Interestingly, middle-aged animals could centrally compensate for the loss of auditory fiber activity through an increase in late auditory brainstem responses (late auditory brainstem response wave) linked to shortening of central response latencies. In contrast, old animals failed to restore central responsiveness, which correlated with reduced temporal resolution in responding to amplitude changes. These findings may suggest that cochlear IHC synaptopathy with age does not necessarily induce temporal auditory coding deficits, as long as the capacity to generate neuronal gain maintains normal sound-induced central amplitudes.


Assuntos
Envelhecimento/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Audição/fisiologia , Animais , Percepção Auditiva/fisiologia , Limiar Auditivo , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Humanos , Ratos Wistar , Tempo de Reação/fisiologia
8.
Mol Neurobiol ; 53(8): 5607-27, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26476841

RESUMO

For all sensory organs, the establishment of spatial and temporal cortical resolution is assumed to be initiated by the first sensory experience and a BDNF-dependent increase in intracortical inhibition. To address the potential of cortical BDNF for sound processing, we used mice with a conditional deletion of BDNF in which Cre expression was under the control of the Pax2 or TrkC promoter. BDNF deletion profiles between these mice differ in the organ of Corti (BDNF (Pax2) -KO) versus the auditory cortex and hippocampus (BDNF (TrkC) -KO). We demonstrate that BDNF (Pax2) -KO but not BDNF (TrkC) -KO mice exhibit reduced sound-evoked suprathreshold ABR waves at the level of the auditory nerve (wave I) and inferior colliculus (IC) (wave IV), indicating that BDNF in lower brain regions but not in the auditory cortex improves sound sensitivity during hearing onset. Extracellular recording of IC neurons of BDNF (Pax2) mutant mice revealed that the reduced sensitivity of auditory fibers in these mice went hand in hand with elevated thresholds, reduced dynamic range, prolonged latency, and increased inhibitory strength in IC neurons. Reduced parvalbumin-positive contacts were found in the ascending auditory circuit, including the auditory cortex and hippocampus of BDNF (Pax2) -KO, but not of BDNF (TrkC) -KO mice. Also, BDNF (Pax2) -WT but not BDNF (Pax2) -KO mice did lose basal inhibitory strength in IC neurons after acoustic trauma. These findings suggest that BDNF in the lower parts of the auditory system drives auditory fidelity along the entire ascending pathway up to the cortex by increasing inhibitory strength in behaviorally relevant frequency regions. Fidelity and inhibitory strength can be lost following auditory nerve injury leading to diminished sensory outcome and increased central noise.


Assuntos
Córtex Auditivo/patologia , Córtex Auditivo/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ruído , Animais , Córtex Auditivo/metabolismo , Limiar Auditivo , Cóclea/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico , Deleção de Genes , Audição , Colículos Inferiores/patologia , Colículos Inferiores/fisiopatologia , Integrases/metabolismo , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Receptor trkC/metabolismo , Fatores de Risco
9.
Cell Mol Life Sci ; 72(20): 3953-69, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25939269

RESUMO

The unconventional myosin VI, a member of the actin-based motor protein family of myosins, is expressed in the retina. Its deletion was previously shown to reduce amplitudes of the a- and b-waves of the electroretinogram. Analyzing wild-type and myosin VI-deficient Snell's Waltzer mice in more detail, the expression pattern of myosin VI in retinal pigment epithelium, outer limiting membrane, and outer plexiform layer could be linked with differential progressing ocular deficits. These encompassed reduced a-waves and b-waves and disturbed oscillatory potentials in the electroretinogram, photoreceptor cell death, retinal microglia infiltration, and formation of basal laminar deposits. A phenotype comprising features of glaucoma (neurodegeneration) and age-related macular degeneration could thus be uncovered that suggests dysfunction of myosin VI and its variable cargo adaptor proteins for membrane sorting and autophagy, as possible candidate mediators for both disease forms.


Assuntos
Deleção de Genes , Degeneração Macular/genética , Cadeias Pesadas de Miosina/fisiologia , Doenças do Nervo Óptico/genética , Animais , Genótipo , Degeneração Macular/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Doenças do Nervo Óptico/patologia , Células Fotorreceptoras de Vertebrados/patologia , Retina/metabolismo , Retina/fisiologia
10.
Cell Physiol Biochem ; 35(5): 1905-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25871611

RESUMO

BACKGROUND: Accumulating evidence suggests that tinnitus may occur despite normal auditory sensitivity, probably linked to partial degeneration of the cochlear nerve and damage of the inner hair cell (IHC) synapse. Damage to the IHC synapses and deafferentation may occur even after moderate noise exposure. For both salicylate- and noise-induced tinnitus, aberrant N-methyl-d-aspartate (NMDA) receptor activation and related auditory nerve excitation have been suggested as origin of cochlear tinnitus. Accordingly, NMDA receptor inhibition has been proposed as a pharmacologic approach for treatment of synaptopathic tinnitus. METHODS: Round-window application of the NMDA receptor antagonist AM-101 (Esketamine hydrochloride gel; Auris Medical AG, Basel, Switzerland) was tested in an animal model of tinnitus induced by acute traumatic noise. The study included the quantification of IHC ribbon synapses as a correlate for deafferentation as well as the measurement of the auditory brainstem response (ABR) to close-threshold sensation level stimuli as an indication of sound-induced auditory nerve activity. RESULTS: We have shown that AM-101 reduced the trauma-induced loss of IHC ribbons and counteracted the decline of ABR wave I amplitude generated in the cochlea/auditory nerve. CONCLUSION: Local round-window application of AM-101 may be a promising therapeutic intervention for the treatment of synaptopathic tinnitus.


Assuntos
Cóclea/metabolismo , Ruído , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Anestesia , Animais , Proteínas Reguladoras de Apoptose/uso terapêutico , Proteínas Reguladoras de Apoptose/toxicidade , Limiar Auditivo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Zumbido/tratamento farmacológico , Zumbido/etiologia
11.
Cell Tissue Res ; 361(1): 77-93, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25843689

RESUMO

Before hearing onset, inner hair cell (IHC) maturation proceeds under the influence of spontaneous Ca(2+) action potentials (APs). The temporal signature of the IHC Ca(2+) AP is modified through an efferent cholinergic feedback from the medial olivocochlear bundle (MOC) and drives the IHC pre- and post-synapse phenotype towards low spontaneous (spike) rate (SR), high-threshold characteristics. With sensory experience, the IHC pre- and post-synapse phenotype matures towards the instruction of low-SR, high-threshold and of high-SR, low-threshold auditory fiber characteristics. Corticosteroid feedback together with local brain-derived nerve growth factor (BDNF) and catecholaminergic neurotransmitters (dopamine) might be essential for this developmental step. In this review, we address the question of whether the control of low-SR and high-SR fiber characteristics is linked to various degrees of vulnerability of auditory fibers in the mature system. In particular, we examine several IHC synaptopathies in the context of various hearing disorders and exemplified shortfalls before and after hearing onset.


Assuntos
Cóclea/crescimento & desenvolvimento , Células Ciliadas Auditivas Internas/metabolismo , Transtornos da Audição/genética , Perda Auditiva Central/genética , Células Ciliadas Auditivas Internas/citologia , Humanos
12.
Orphanet J Rare Dis ; 10: 15, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25759012

RESUMO

BACKGROUND: Early-onset hearing loss is mostly of genetic origin. The complexity of the hearing process is reflected by its extensive genetic heterogeneity, with probably many causative genes remaining to be identified. Here, we aimed at identifying the genetic basis for autosomal dominant non-syndromic hearing loss (ADNSHL) in a large German family. METHODS: A panel of 66 known deafness genes was analyzed for mutations by next-generation sequencing (NGS) in the index patient. We then conducted genome-wide linkage analysis, and whole-exome sequencing was carried out with samples of two patients. Expression of Osbpl2 in the mouse cochlea was determined by immunohistochemistry. Because Osbpl2 has been proposed as a target of miR-96, we investigated homozygous Mir96 mutant mice for its upregulation. RESULTS: Onset of hearing loss in the investigated ADNSHL family is in childhood, initially affecting the high frequencies and progressing to profound deafness in adulthood. However, there is considerable intrafamilial variability. We mapped a novel ADNSHL locus, DFNA67, to chromosome 20q13.2-q13.33, and subsequently identified a co-segregating heterozygous frameshift mutation, c.141_142delTG (p.Arg50Alafs*103), in OSBPL2, encoding a protein known to interact with the DFNA1 protein, DIAPH1. In mice, Osbpl2 was prominently expressed in stereocilia of cochlear outer and inner hair cells. We found no significant Osbpl2 upregulation at the mRNA level in homozygous Mir96 mutant mice. CONCLUSION: The function of OSBPL2 in the hearing process remains to be determined. Our study and the recent description of another frameshift mutation in a Chinese ADNSHL family identify OSBPL2 as a novel gene for progressive deafness.


Assuntos
Surdez/genética , Células Ciliadas Auditivas/metabolismo , Receptores de Esteroides/metabolismo , Estereocílios/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Ligação Genética , Humanos , Lactente , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Linhagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Esteroides/genética , Adulto Jovem
13.
Int J Infect Dis ; 18: 87-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24161208

RESUMO

We report a case of cryptococcal immune reconstitution inflammatory syndrome affecting the lungs, and 10 months later the cervical lymph nodes, in the absence of cryptococcal meningitis, in advanced HIV infection. Our report demonstrates the organ-specificity of the timing of the inflammatory response and illustrates the organ-specific interplay of immunity and infection in cryptococcal disease.


Assuntos
Infecções por HIV/microbiologia , Síndrome Inflamatória da Reconstituição Imune/tratamento farmacológico , Meningite Criptocócica/tratamento farmacológico , Adulto , Antifúngicos/uso terapêutico , Cryptococcus/efeitos dos fármacos , DNA Fúngico/isolamento & purificação , Seguimentos , Infecções por HIV/tratamento farmacológico , Humanos , Pulmão/microbiologia , Linfonodos/microbiologia , Masculino , Carga Viral
14.
Mol Cell Endocrinol ; 382(1): 26-37, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-24012852

RESUMO

Thyroid hormone acts on gene transcription by binding to its nuclear receptors TRα1 and TRß. Whereas global deletion of TRß causes deafness, global TRα-deficient mice have normal hearing thresholds. Since the individual roles of the two receptors in cochlear hair cells are still unclear, we generated mice with a hair cell-specific mutation of TRα1 or deletion of TRß using the Cre-loxP system. Hair cell-specific TRß mutant mice showed normal hearing thresholds but delayed BK channel expression in inner hair cells, slightly stronger outer hair cell function, and slightly reduced amplitudes of auditory brainstem responses. In contrast, hair cell-specific TRα mutant mice showed normal timing of BK channel expression, slightly reduced outer hair cell function, and slightly enhanced amplitudes of auditory brainstem responses. Our data demonstrate that TRß-related deafness originates outside of hair cells and that TRα and TRß play opposing, non-redundant roles in hair cells. A role for thyroid hormone receptors in controlling key regulators that shape signal transduction during development is discussed. Thyroid hormone may act through different thyroid hormone receptor activities to permanently alter the sensitivity of auditory neurotransmission.


Assuntos
Células Ciliadas Auditivas/metabolismo , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Vias Aferentes/metabolismo , Animais , Percepção Auditiva , Tronco Encefálico/metabolismo , Regulação da Expressão Gênica , Células Ciliadas Auditivas/fisiologia , Canais de Potássio KCNQ/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Camundongos , Camundongos Knockout , Proteínas Motores Moleculares/metabolismo , Especificidade de Órgãos , Emissões Otoacústicas Espontâneas , Fenótipo , Recombinação Genética/genética , Transdução de Sinais , Membrana Tectorial/crescimento & desenvolvimento , Membrana Tectorial/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/genética
15.
Prog Neurobiol ; 111: 17-33, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24012803

RESUMO

The prevalence of hearing problems in the Western world has, due to aging of the population, doubled over the past 30 years. Thereby, noise-induced hearing loss is an important factor that worsens over time in addition to age-related hearing loss. Hearing loss is usually measured as an elevation of a person's hearing thresholds, expressed in decibel (dB). However, recent animal studies have unraveled a type of permanent cochlear damage, without an elevation of hearing thresholds. This subtle damage is linked to a permanent and progressive degeneration of auditory fibers that occurs in association with damage of the inner hair cell synapse. Afferent neuronal degeneration has been suggested to be involved in hyperacusis (over sensitivity to sound) and tinnitus (a phantom sound percept). Hyperacusis and tinnitus are potentially devastating conditions that are still incurable. The main risk factors to develop tinnitus or hyperacusis are hearing loss, social stress and age. Both tinnitus and hyperacusis have been discussed in the context of a pathological increased response gain in subcortical brain regions as a reaction to deprivation of sensory input. Novel studies confirm the involvement of peripheral deafferentation for tinnitus and hyperacusis, but suggest that the disorder results from different brain responses to different degrees of deafferentation: while tinnitus may arise as a failure of the brain to adapt to deprived peripheral input, hyperacusis may result from an 'over-adaptive' increase in response gain. Moreover, moderate and high stress levels at the time of acoustic trauma have been suggested to play a pivotal role in the vulnerability of the cochlea to acoustic damage and therefore for the development of tinnitus and hyperacusis.


Assuntos
Cóclea/fisiopatologia , Hiperacusia/fisiopatologia , Neurobiologia , Zumbido/fisiopatologia , Animais , Limiar Auditivo/fisiologia , Cóclea/patologia , Humanos
16.
J Neurosci ; 33(22): 9508-19, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23719817

RESUMO

The encoding of auditory information with indefatigable precision requires efficient resupply of vesicles at inner hair cell (IHC) ribbon synapses. Otoferlin, a transmembrane protein responsible for deafness in DFNB9 families, has been postulated to act as a calcium sensor for exocytosis as well as to be involved in rapid vesicle replenishment of IHCs. However, the molecular basis of vesicle recycling in IHCs is largely unknown. In the present study, we used high-resolution liquid chromatography coupled with mass spectrometry to copurify otoferlin interaction partners in the mammalian cochlea. We identified multiple subunits of the adaptor protein complex AP-2 (CLAP), an essential component of clathrin-mediated endocytosis, as binding partners of otoferlin in rats and mice. The interaction between otoferlin and AP-2 was confirmed by coimmunoprecipitation. We also found that AP-2 interacts with myosin VI, another otoferlin binding partner important for clathrin-mediated endocytosis (CME). The expression of AP-2 in IHCs was verified by reverse transcription PCR. Confocal microscopy experiments revealed that the expression of AP-2 and its colocalization with otoferlin is confined to mature IHCs. When CME was inhibited by blocking dynamin action, real-time changes in membrane capacitance showed impaired synaptic vesicle replenishment in mature but not immature IHCs. We suggest that an otoferlin-AP-2 interaction drives Ca(2+)- and stimulus-dependent compensating CME in mature IHCs.


Assuntos
Clatrina/fisiologia , Cóclea/fisiologia , Endocitose/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Proteínas de Membrana/fisiologia , Complexo 2 de Proteínas Adaptadoras/fisiologia , Animais , Membrana Celular/fisiologia , Cóclea/citologia , Fenômenos Eletrofisiológicos , Imuno-Histoquímica , Imunoprecipitação , Espectrometria de Massas , Camundongos , Microscopia Confocal , Cadeias Pesadas de Miosina/fisiologia , Ligação Proteica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Sinapses/fisiologia
17.
Histochem Cell Biol ; 140(2): 119-35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23542924

RESUMO

The motor protein, prestin, situated in the basolateral plasma membrane of cochlear outer hair cells (OHCs), underlies the generation of somatic, voltage-driven mechanical force, the basis for the exquisite sensitivity, frequency selectivity and dynamic range of mammalian hearing. The molecular and structural basis of the ontogenetic development of this electromechanical force has remained elusive. The present study demonstrates that this force is significantly reduced when the immature subcellular distribution of prestin found along the entire plasma membrane persists into maturity, as has been described in previous studies under hypothyroidism. This observation suggests that cochlear amplification is critically dependent on the surface expression and distribution of prestin. Searching for proteins involved in organizing the subcellular localization of prestin to the basolateral plasma membrane, we identified cochlear expression of a novel truncated prestin splice isoform named prestin 9b (Slc26A5d) that contains a putative PDZ domain-binding motif. Using prestin 9b as the bait in a yeast two-hybrid assay, we identified a calcium/calmodulin-dependent serine protein kinase (CASK) as an interaction partner of prestin. Co-immunoprecipitation assays showed that CASK and prestin 9b can interact with full-length prestin. CASK was co-localized with prestin in a membrane domain where prestin-expressing OHC membrane abuts prestin-free OHC membrane, but was absent from this area for thyroid hormone deficiency. These findings suggest that CASK and the truncated prestin splice isoform contribute to confinement of prestin to the basolateral region of the plasma membrane. By means of such an interaction, the basal junction region between the OHC and its Deiter's cell may contribute to efficient generation of somatic electromechanical force.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Eletricidade , Guanilato Quinases/metabolismo , Células Ciliadas Auditivas Externas/fisiologia , Fenômenos Mecânicos , Núcleo Vestibular Lateral/citologia , Núcleo Vestibular Lateral/metabolismo , Animais , Proteínas de Transporte de Ânions/análise , Proteínas de Transporte de Ânions/genética , Células Cultivadas , Feminino , Guanilato Quinases/análise , Guanilato Quinases/genética , Células HEK293 , Células Ciliadas Auditivas Externas/química , Células Ciliadas Auditivas Externas/citologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos , Proteínas Motores Moleculares/análise , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Ratos , Ratos Wistar , Transportadores de Sulfato , Núcleo Vestibular Lateral/química
18.
PLoS One ; 8(3): e57247, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516401

RESUMO

Tinnitus is proposed to be caused by decreased central input from the cochlea, followed by increased spontaneous and evoked subcortical activity that is interpreted as compensation for increased responsiveness of central auditory circuits. We compared equally noise exposed rats separated into groups with and without tinnitus for differences in brain responsiveness relative to the degree of deafferentation in the periphery. We analyzed (1) the number of CtBP2/RIBEYE-positive particles in ribbon synapses of the inner hair cell (IHC) as a measure for deafferentation; (2) the fine structure of the amplitudes of auditory brainstem responses (ABR) reflecting differences in sound responses following decreased auditory nerve activity and (3) the expression of the activity-regulated gene Arc in the auditory cortex (AC) to identify long-lasting central activity following sensory deprivation. Following moderate trauma, 30% of animals exhibited tinnitus, similar to the tinnitus prevalence among hearing impaired humans. Although both tinnitus and no-tinnitus animals exhibited a reduced ABR wave I amplitude (generated by primary auditory nerve fibers), IHCs ribbon loss and high-frequency hearing impairment was more severe in tinnitus animals, associated with significantly reduced amplitudes of the more centrally generated wave IV and V and less intense staining of Arc mRNA and protein in the AC. The observed severe IHCs ribbon loss, the minimal restoration of ABR wave size, and reduced cortical Arc expression suggest that tinnitus is linked to a failure to adapt central circuits to reduced cochlear input.


Assuntos
Adaptação Fisiológica , Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico , Ruído/efeitos adversos , Zumbido/etiologia , Animais , Córtex Auditivo/metabolismo , Limiar Auditivo , Comportamento Animal , Cóclea/metabolismo , Proteínas do Citoesqueleto/metabolismo , Feminino , Células Ciliadas Auditivas Internas/metabolismo , Perda Auditiva Provocada por Ruído/fisiopatologia , Imuno-Histoquímica , Proteínas do Tecido Nervoso/metabolismo , Ratos , Zumbido/metabolismo
19.
Mol Neurobiol ; 47(1): 261-79, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23154938

RESUMO

Increasing evidence shows that hearing loss is a risk factor for tinnitus and hyperacusis. Although both often coincide, a causal relationship between tinnitus and hyperacusis has not been shown. Currently, tinnitus and hyperacusis are assumed to be caused by elevated responsiveness in subcortical circuits. We examined both the impact of different degrees of cochlear damage and the influence of stress priming on tinnitus induction. We used (1) a behavioral animal model for tinnitus designed to minimize stress, (2) ribbon synapses in inner hair cells (IHCs) as a measure for deafferentation, (3) the integrity of auditory brainstem responses (ABR) to detect differences in stimulus-evoked neuronal activity, (4) the expression of the activity-regulated cytoskeletal protein, Arc, to identify long-lasting changes in network activity within the basolateral amygdala (BLA), hippocampal CA1, and auditory cortex (AC), and (5) stress priming to investigate the influence of corticosteroid on trauma-induced brain responses. We observed that IHC ribbon loss (deafferentation) leads to tinnitus when ABR functions remain reduced and Arc is not mobilized in the hippocampal CA1 and AC. If, however, ABR waves are functionally restored and Arc is mobilized, tinnitus does not occur. Both central response patterns were found to be independent of a profound threshold loss and could be shifted by the corticosterone level at the time of trauma. We, therefore, discuss the findings in the context of a history of stress that can trigger either an adaptive or nonadaptive brain response following injury.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Células Ciliadas Auditivas Internas/patologia , Proteínas do Tecido Nervoso/metabolismo , Ruído/efeitos adversos , Zumbido/metabolismo , Zumbido/patologia , Estimulação Acústica , Animais , Córtex Auditivo/metabolismo , Córtex Auditivo/patologia , Córtex Auditivo/fisiopatologia , Limiar Auditivo , Proteínas do Citoesqueleto/genética , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Células Ciliadas Auditivas Internas/metabolismo , Perda Auditiva/complicações , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Perda Auditiva/fisiopatologia , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Estresse Psicológico/complicações , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia , Zumbido/complicações , Zumbido/fisiopatologia
20.
FASEB J ; 26(9): 3834-43, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22691916

RESUMO

Large conductance, voltage- and Ca(2+)-activated K(+) (BK) channels in inner hair cells (IHCs) of the cochlea are essential for hearing. However, germline deletion of BKα, the pore-forming subunit KCNMA1 of the BK channel, surprisingly did not affect hearing thresholds in the first postnatal weeks, even though altered IHC membrane time constants, decreased IHC receptor potential alternating current/direct current ratio, and impaired spike timing of auditory fibers were reported in these mice. To investigate the role of IHC BK channels for central auditory processing, we generated a conditional mouse model with hair cell-specific deletion of BKα from postnatal day 10 onward. This had an unexpected effect on temporal coding in the central auditory system: neuronal single and multiunit responses in the inferior colliculus showed higher excitability and greater precision of temporal coding that may be linked to the improved discrimination of temporally modulated sounds observed in behavioral training. The higher precision of temporal coding, however, was restricted to slower modulations of sound and reduced stimulus-driven activity. This suggests a diminished dynamic range of stimulus coding that is expected to impair signal detection in noise. Thus, BK channels in IHCs are crucial for central coding of the temporal fine structure of sound and for detection of signals in a noisy environment.


Assuntos
Encéfalo/fisiologia , Cóclea/fisiologia , Células Ciliadas Auditivas/fisiologia , Audição/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Animais , Imuno-Histoquímica , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Aprendizagem , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...