Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 22(3): 313-321, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964651

RESUMO

With thousands of discovered planets orbiting other stars and new missions that will explore our solar system, the search for life in the universe has entered a new era. However, a reference database to enable our search for life on the surface of icy exoplanets and exomoons by using records from Earth's icy biota is missing. Therefore, we developed a spectra catalogue of life in ice to facilitate the search for extraterrestrial signs of life. We measured the reflection spectra of 80 microorganisms-with a wide range of pigments-isolated from ice and water. We show that carotenoid signatures are wide-ranged and intriguing signs of life. Our measurements allow for the identification of such surface life on icy extraterrestrial environments in preparation for observations with the upcoming ground- and space-based telescopes. Dried samples reveal even higher reflectance, which suggests that signatures of surface biota could be more intense on exoplanets and moons that are drier than Earth or on environments like Titan where potential life-forms may use a different solvent. Our spectra library covers the visible to near-infrared and is available online. It provides a guide for the search for surface life on icy worlds based on biota from Earth's icy environments.


Assuntos
Exobiologia , Gelo , Planeta Terra , Meio Ambiente Extraterreno , Planetas
2.
ISME J ; 15(1): 293-303, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32951020

RESUMO

Ombrotrophic bogs accumulate large stores of soil carbon that eventually decompose to carbon dioxide and methane. Carbon accumulates because Sphagnum mosses slow microbial carbon decomposition processes, leading to the production of labile intermediate compounds. Acetate is a major product of Sphagnum degradation, yet rates of hydrogenotrophic methanogenesis far exceed rates of aceticlastic methanogenesis, suggesting that alternative acetate mineralization processes exist. Two possible explanations are aerobic respiration and anaerobic respiration via humic acids as electron acceptors. While these processes have been widely observed, microbial community interactions linking Sphagnum degradation and acetate mineralization remain cryptic. In this work, we use ordination and network analysis of functional genes from 110 globally distributed peatland metagenomes to identify conserved metabolic pathways in Sphagnum bogs. We then use metagenome-assembled genomes (MAGs) from McLean Bog, a Sphagnum bog in New York State, as a local case study to reconstruct pathways of Sphagnum degradation and acetate mineralization. We describe metabolically flexible Acidobacteriota MAGs that contain all genes to completely degrade Sphagnum cell wall sugars under both aerobic and anaerobic conditions. Finally, we propose a hypothetical model of acetate oxidation driven by changes in peat redox potential that explain how bogs may circumvent aceticlastic methanogenesis through aerobic and humics-driven respiration.


Assuntos
Sphagnopsida , Acetatos , Solo , Microbiologia do Solo , Áreas Alagadas
3.
FEMS Microbiol Lett ; 367(20)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33068423

RESUMO

Methane emission feedbacks in wetlands are predicted to influence global climate under climate change and other anthropogenic stressors. Herein, we review the taxonomy and physiological ecology of the microorganisms responsible for methane production in peatlands. Common in peat soils are five of the eight described orders of methanogens spanning three phyla (Euryarchaeota, Halobacterota and Thermoplasmatota). The phylogenetic affiliation of sequences found in peat suggest that members of the thus-far-uncultivated group Candidatus Bathyarchaeota (representing a fourth phylum) may be involved in methane cycling, either anaerobic oxidation of methane and/or methanogenesis, as at least a few organisms within this group contain the essential gene, mcrA, according to metagenomic data. Methanogens in peatlands are notoriously challenging to enrich and isolate; thus, much remains unknown about their physiology and how methanogen communities will respond to environmental changes. Consistent patterns of changes in methanogen communities have been reported across studies in permafrost peatland thaw where the resulting degraded feature is thermokarst. However much remains to be understood regarding methanogen community feedbacks to altered hydrology and warming in other contexts, enhanced atmospheric pollution (N, S and metals) loading and direct anthropogenic disturbances to peatlands like drainage, horticultural peat extraction, forestry and agriculture, as well as post-disturbance reclamation.


Assuntos
Archaea/classificação , Microbiologia do Solo , Solo , Áreas Alagadas , Metano/metabolismo , Microbiota/fisiologia
4.
Front Microbiol ; 8: 1623, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28928719

RESUMO

Microbial interactions driving key biogeochemical fluxes often occur within multispecies consortia that form spatially heterogeneous microenvironments. Here, we describe the "green berry" consortia of the Sippewissett salt marsh (Falmouth, MA, United States): millimeter-sized aggregates dominated by an uncultured, diazotrophic unicellular cyanobacterium of the order Chroococcales (termed GB-CYN1). We show that GB-CYN1 is closely related to Crocosphaera watsonii (UCYN-B) and "Candidatus Atelocyanobacterium thalassa" (UCYN-A), two groups of unicellular diazotrophic cyanobacteria that play an important role in marine primary production. Other green berry consortium members include pennate diatoms and putative heterotrophic bacteria from the Alphaproteobacteria and Bacteroidetes. Tight coupling was observed between photosynthetic oxygen production and heterotrophic respiration. When illuminated, the green berries became supersaturated with oxygen. From the metagenome, we observed that GB-CYN1 encodes photosystem II genes and thus has the metabolic potential for oxygen production unlike UCYN-A. In darkness, respiratory activity rapidly depleted oxygen creating anoxia within the aggregates. Metagenomic data revealed a suite of nitrogen fixation genes encoded by GB-CYN1, and nitrogenase activity was confirmed at the whole-aggregate level by acetylene reduction assays. Metagenome reads homologous to marker genes for denitrification were observed and suggest that heterotrophic denitrifiers might co-occur in the green berries, although the physiology and activity of facultative anaerobes in these aggregates remains uncharacterized. Nitrogen fixation in the surface ocean was long thought to be driven by filamentous cyanobacterial aggregates, though recent work has demonstrated the importance of unicellular diazotrophic cyanobacteria (UCYN) from the order Chroococcales. The green berries serve as a useful contrast to studies of open ocean UCYN and may provide a tractable model system to investigate microbial dynamics within phytoplankton aggregates, a phenomenon of global importance to the flux of particulate organic carbon and nitrogen in surface waters.

5.
Environ Sci Technol ; 51(7): 3714-3724, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28233989

RESUMO

Dehalococcoides mccartyi strain CBDB1 and Dehalobacter strain 14DCB1 are organohalide-respiring microbes of the phyla Chloroflexi and Firmicutes, respectively. Here, we report the transformation of chloroanilines by these two bacterial strains via dissimilar dehalogenation pathways and discuss the underlying mechanism with quantum chemically calculated net atomic charges of the substrate Cl, H, and C atoms. Strain CBDB1 preferentially removed Cl doubly flanked by two Cl or by one Cl and NH2, whereas strain 14DCB1 preferentially dechlorinated Cl that has an ortho H. For the CBDB1-mediated dechlorination, comparative analysis with Hirshfeld charges shows that the least-negative Cl discriminates active from nonactive substrates in 14 out of 15 cases and may represent the preferred site of primary attack through cob(I)alamin. For the latter trend, three of seven active substrates provide strong evidence, with partial support from three of the remaining four substrates. Regarding strain 14DCB1, the most positive carbon-attached H atom discriminates active from nonactive chloroanilines in again 14 out of 15 cases. Here, regioselectivity is governed for 10 of the 11 active substrates by the most positive H attached to the highest-charge (most positive or least negative) aromatic C carrying the Cl to be removed. These findings suggest the aromatic ring H as primary site of attack through the supernucleophile Co(I), converting an initial H bond to a full electron transfer as start of the reductive dehalogenation. For both mechanisms, one- and two-electron transfer to Cl (strain CBDB1) or H (strain 14DCB1) are compatible with the presently available data. Computational chemistry research into reaction intermediates and pathways may further aid in understanding the bacterial reductive dehalogenation at the molecular level.


Assuntos
Chloroflexi/metabolismo , Halogenação , Estrutura Molecular , Peptococcaceae
6.
ISME J ; 11(1): 87-99, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27552639

RESUMO

Members of the order Methanomicrobiales are abundant, and sometimes dominant, hydrogenotrophic (H2-CO2 utilizing) methanoarchaea in a broad range of anoxic habitats. Despite their key roles in greenhouse gas emissions and waste conversion to methane, little is known about the physiological and genomic bases for their widespread distribution and abundance. In this study, we compared the genomes of nine diverse Methanomicrobiales strains, examined their pangenomes, reconstructed gene flow and identified genes putatively mediating their success across different habitats. Most strains slowly increased gene content whereas one, Methanocorpusculum labreanum, evidenced genome downsizing. Peat-dwelling Methanomicrobiales showed adaptations centered on improved transport of scarce inorganic nutrients and likely use H+ rather than Na+ transmembrane chemiosmotic gradients during energy conservation. In contrast, other Methanomicrobiales show the potential to concurrently use Na+ and H+ chemiosmotic gradients. Analyses also revealed that the Methanomicrobiales lack a canonical electron bifurcation system (MvhABGD) known to produce low potential electrons in other orders of hydrogenotrophic methanogens. Additional putative differences in anabolic metabolism suggest that the dynamics of interspecies electron transfer from Methanomicrobiales syntrophic partners can also differ considerably. Altogether, these findings suggest profound differences in electron trafficking in the Methanomicrobiales compared with other hydrogenotrophs, and warrant further functional evaluations.


Assuntos
Genoma Arqueal , Methanomicrobiales/genética , Aclimatação , Adaptação Fisiológica , Ecossistema , Genômica , Metano/metabolismo , Methanomicrobiales/classificação , Methanomicrobiales/isolamento & purificação , Methanomicrobiales/fisiologia , Filogenia , Solo , Microbiologia do Solo
7.
Environ Microbiol ; 18(9): 2773-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26743438
8.
Genome Announc ; 3(6)2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26543115

RESUMO

Here, we report the complete genome sequence (2.92 Mb) of Methanosphaerula palustris E1-9C(T), a methanogen isolated from a minerotrophic fen. This is the first genome report of the Methanosphaerula genus, within the Methanoregulaceae family, in the Methanomicrobiales order. E1-9C(T) relatives are found in a wide range of ecological and geographical settings.

10.
Microbiology (Reading) ; 161(8): 1572-1581, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25998264

RESUMO

Analysis of the genome sequence of Methanoregula boonei strain 6A8, an acidophilic methanogen isolated from an ombrotrophic (rain-fed) peat bog, has revealed unique features that likely allow it to survive in acidic, nutrient-poor conditions. First, M. boonei is predicted to generate ATP using protons that are abundant in peat, rather than sodium ions that are scarce, and the sequence of a membrane-bound methyltransferase, believed to pump Na+ in all methanogens, shows differences in key amino acid residues. Further, perhaps reflecting the hypokalemic status of many peat bogs, M. boonei demonstrates redundancy in the predicted potassium uptake genes trk, kdp and kup, some of which may have been horizontally transferred to methanogens from bacteria, possibly Geobacter spp. Overall, the putative functions of the potassium uptake, ATPase and methyltransferase genes may, at least in part, explain the cosmopolitan success of group E1/E2 and related methanogenic archaea in acidic peat bogs.


Assuntos
Genoma Bacteriano , Methanomicrobiales/fisiologia , Microbiologia do Solo , Adaptação Fisiológica , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Concentração de Íons de Hidrogênio , Metano/metabolismo , Methanomicrobiales/classificação , Methanomicrobiales/genética , Methanomicrobiales/isolamento & purificação , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Solo/química
11.
Genome Announc ; 2(5)2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25189582

RESUMO

Methanoregula formicica SMSP(T) is a mesophilic H2/formate-utilizing methanogenic archaeon and a representative of the family Methanoregulaceae, a recently proposed novel family within the order Methanomicrobiales. Here, we report a 2.8-Mb complete genome sequence of this methanogenic archaeon.

12.
Genome Announc ; 2(5)2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25189585

RESUMO

Here, we report a 2.0-Mb complete genome sequence of Methanolinea tarda NOBI-1(T), a methanogenic archaeon isolated from an anaerobic digested sludge. This is the first genome report of the genus Methanolinea isolate belonging to the family Methanoregulaceae, a recently proposed novel family within the order Methanomicrobiales.

13.
Biodegradation ; 25(6): 893-901, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25151178

RESUMO

Vinyl chloride (VC) is a known human carcinogen and common groundwater contaminant. Reductive dechlorination of VC to non-toxic ethene under anaerobic conditions has been demonstrated at numerous hazardous waste sites. However, VC disappearance without stoichiometric production of ethene has also been observed at some sites and in microcosms. In this study we identify an organism responsible for this observation in presumably anaerobic microcosms and conclude that oxygen was not detectable based on a lack of color change from added resazurin. This organism, a Mycobacterium sp. closely related to known VC oxidizing strains, was present in high numbers in 16S rRNA gene clone libraries from a groundwater microcosm. Although the oxidation/reduction indicator resazurin remained in the clear reduced state in these studies, these results suggest inadvertent oxygen contamination occurred. This study helps to elucidate the dynamic behavior of chlorinated ethenes in contaminated groundwater, through the isolation of a strictly aerobic organism that may be responsible for at least some disappearance of VC without the concomitant production of ethene in groundwater considered anaerobic.


Assuntos
Bactérias Aeróbias/isolamento & purificação , Bactérias Aeróbias/metabolismo , Biodegradação Ambiental , Água Subterrânea/microbiologia , Mycobacterium/isolamento & purificação , Mycobacterium/metabolismo , Cloreto de Vinil/metabolismo , Bactérias Aeróbias/genética , Monitoramento Ambiental , Mycobacterium/genética , Oxirredução , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/metabolismo
14.
Appl Environ Microbiol ; 80(19): 6062-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063656

RESUMO

A cDNA-microarray was designed and used to monitor the transcriptomic profile of Dehalococcoides mccartyi strain 195 (in a mixed community) respiring various chlorinated organics, including chloroethenes and 2,3-dichlorophenol. The cultures were continuously fed in order to establish steady-state respiration rates and substrate levels. The organization of array data into a clustered heat map revealed two major experimental partitions. This partitioning in the data set was further explored through principal component analysis. The first two principal components separated the experiments into those with slow (1.6±0.6 µM Cl-/h)- and fast (22.9±9.6 µM Cl-/h)-respiring cultures. Additionally, the transcripts with the highest loadings in these principal components were identified, suggesting that those transcripts were responsible for the partitioning of the experiments. By analyzing the transcriptomes (n=53) across experiments, relationships among transcripts were identified, and hypotheses about the relationships between electron transport chain members were proposed. One hypothesis, that the hydrogenases Hup and Hym and the formate dehydrogenase-like oxidoreductase (DET0186-DET0187) form a complex (as displayed by their tight clustering in the heat map analysis), was explored using a nondenaturing protein separation technique combined with proteomic sequencing. Although these proteins did not migrate as a single complex, DET0112 (an FdhB-like protein encoded in the Hup operon) was found to comigrate with DET0187 rather than with the catalytic Hup subunit DET0110. On closer inspection of the genome annotations of all Dehalococcoides strains, the DET0185-to-DET0187 operon was found to lack a key subunit, an FdhB-like protein. Therefore, on the basis of the transcriptomic, genomic, and proteomic evidence, the place of the missing subunit in the DET0185-to-DET0187 operon is likely filled by recruiting a subunit expressed from the Hup operon (DET0112).


Assuntos
Chloroflexi/genética , Regulação Bacteriana da Expressão Gênica , Hidrocarbonetos Clorados/metabolismo , Oxirredutases/genética , Transcriptoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chloroflexi/enzimologia , Chloroflexi/fisiologia , Clorofenóis/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Hidrogenase/genética , Hidrogenase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Óperon/genética , Oxirredutases/metabolismo , Subunidades Proteicas
15.
Environ Sci Technol ; 48(9): 4844-51, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24758692

RESUMO

Chlorinated benzenes are ubiquitous organic contaminants found in groundwater and soils. Compound specific isotope analysis (CSIA) has been increasingly used to assess natural attenuation of chlorinated contaminants, in which anaerobic reductive dechlorination plays an essential role. In this work, carbon isotope fractionation of the three dichlorobenzene (DCB) isomers was investigated during anaerobic reductive dehalogenation in methanogenic laboratory microcosms. Large isotope fractionation of 1,3-DCB and 1,4-DCB was observed while only a small isotope effect occurred for 1,2-DCB. Bulk enrichment factors (εbulk) were determined from a Rayleigh model: -0.8 ± 0.1 ‰ for 1,2-DCB, -5.4 ± 0.4 ‰ for 1,3-DCB, and -6.3 ± 0.2 ‰ for 1,4-DCB. εbulk values were converted to apparent kinetic isotope effects for carbon (AKIE) in order to characterize the carbon isotope effect at the reactive positions for the DCB isomers. AKIE values are 1.005 ± 0.001, 1.034 ± 0.003, and 1.039 ± 0.001 for 1,2-DCB, 1,3-DCB, and 1,4-DCB, respectively. The large difference in AKIE values between 1,2-DCB and 1,3-DCB (or 1,4-DCB) suggests distinct reaction pathways may be involved for different DCB isomers during microbial reductive dechlorination by the methanogenic cultures.


Assuntos
Biodegradação Ambiental , Clorobenzenos/metabolismo , Anaerobiose , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Fracionamento Químico , Clorobenzenos/química , Isomerismo , Cinética
16.
Environ Sci Technol ; 48(7): 3776-82, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24593835

RESUMO

Three enrichment cultures containing Dehalobacter spp. were developed that dehalogenate each of the dichlorobenzene (DCB) isomers to monochlorobenzene (MCB), and the strains using 1,2-DCB (12DCB1) or 1,3-DCB (13DCB1) are now considered isolated, whereas the strain using 1,4-DCB (14DCB1) is considered highly enriched. In this study, we examined the dehalogenation capability of each strain to use chlorobenzenes with three or more chlorines, tetrachloroethene (PCE), or dichlorotoluene (DCT) isomers. Strain 12DCB1 preferentially dehalogenated singly flanked chlorines, but not doubly flanked or unflanked chlorines. It dehalogenated pentachlorobenzene to MCB with little buildup of intermediates. Strain 13DCB1, which could use either 1,3-DCB or 1,2-DCB, demonstrated the widest dehalogenation spectrum of electron acceptors tested, and dehalogenated every chlorobenzene isomer except 1,4-DCB. Notably, strain 13DCB1 dehalogenated the recalcitrant 1,3,5-trichlorobenzene isomer to MCB, and qPCR of 16S rRNA genes indicated that strain 13DCB1 grew. Strain 14DCB1 exhibited the narrowest range of substrate utilization, but was the only strain to dehalogenate para-substituted chlorines. Strains 12DCB1 and 13DCB1 dehalogenated PCE to cis-dichloroethene, and all strains dehalogenated 3,4-DCT to monochlorotoluene. These findings show that Dehalobacter spp., like Dehalococcoides spp., are versatile dehalogenators and should be considered when determining the fate of chlorinated organics at contaminated sites.


Assuntos
Clorobenzenos/metabolismo , Halogenação , Peptococcaceae/metabolismo , Tetracloroetileno/metabolismo , Tolueno/metabolismo , Biodegradação Ambiental , Peptococcaceae/genética , RNA Ribossômico 16S/genética
17.
Environ Microbiol ; 16(11): 3398-415, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24428801

RESUMO

Microbial metabolism is the engine that drives global biogeochemical cycles, yet many key transformations are carried out by microbial consortia over short spatiotemporal scales that elude detection by traditional analytical approaches. We investigate syntrophic sulfur cycling in the 'pink berry' consortia of the Sippewissett Salt Marsh through an integrative study at the microbial scale. The pink berries are macroscopic, photosynthetic microbial aggregates composed primarily of two closely associated species: sulfide-oxidizing purple sulfur bacteria (PB-PSB1) and sulfate-reducing bacteria (PB-SRB1). Using metagenomic sequencing and (34) S-enriched sulfate stable isotope probing coupled with nanoSIMS, we demonstrate interspecies transfer of reduced sulfur metabolites from PB-SRB1 to PB-PSB1. The pink berries catalyse net sulfide oxidation and maintain internal sulfide concentrations of 0-500 µm. Sulfide within the berries, captured on silver wires and analysed using secondary ion mass spectrometer, increased in abundance towards the berry interior, while δ(34) S-sulfide decreased from 6‰ to -31‰ from the exterior to interior of the berry. These values correspond to sulfate-sulfide isotopic fractionations (15-53‰) consistent with either sulfate reduction or a mixture of reductive and oxidative metabolisms. Together this combined metagenomic and high-resolution isotopic analysis demonstrates active sulfur cycling at the microscale within well-structured macroscopic consortia consisting of sulfide-oxidizing anoxygenic phototrophs and sulfate-reducing bacteria.


Assuntos
Bactérias/metabolismo , Chromatiaceae/metabolismo , Consórcios Microbianos , Enxofre/metabolismo , Áreas Alagadas , Bactérias/genética , Chromatiaceae/genética , Metagenoma , Oxirredução , Fotossíntese , Filogenia , Sulfatos/metabolismo , Sulfetos/metabolismo
18.
Int J Syst Evol Microbiol ; 64(Pt 5): 1473-1480, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24449792

RESUMO

Two mesophilic, hydrogenotrophic methanogens, designated strains SWAN1T and AL-21, were isolated from two contrasting peatlands: a near circumneutral temperate minerotrophic fen in New York State, USA, and an acidic boreal poor fen site in Alaska, USA, respectively. Cells of the two strains were rod-shaped, non-motile, stained Gram-negative and resisted lysis with 0.1% SDS. Cell size was 0.6×1.5-2.8 µm for strain SWAN1T and 0.45-0.85×1.5-35 µm for strain AL-21. The strains used H2/CO2 but not formate or other substrates for methanogenesis, grew optimally around 32-37 °C, and their growth spanned through a slightly low to neutral pH range (4.7-7.1). Strain AL-21 grew optimally closer to neutrality at pH 6.2, whereas strain SWAN1T showed a lower optimal pH at 5.4-5.7. The two strains were sensitive to NaCl with a maximal tolerance at 160 mM for strain SWAN1T and 50 mM for strain AL-21. Na2S was toxic at very low concentrations (0.01-0.8 mM), resulting in growth inhibition above these values. The DNA G+C content of the genomes was 35.7 mol% for strain SWAN1T and 35.8 mol% for strain AL-21. Phylogenetic analysis of the 16S rRNA gene sequences showed that the strains are members of the genus Methanobacterium. Strain SWAN1T shared 94-97% similarity with the type strains of recognized species of the genus Methanobacterium, whereas strain AL-21 shared 99% similarity with Methanobacterium lacus 17A1T. On the basis of phenotypic, genomic and phylogenetic characteristics, strain SWAN1T (=DSM 25820T=JCM 18151T) is proposed as the type strain of a novel species, Methanobacterium paludis sp. nov., while strain AL-21 is proposed as a second strain of Methanobacterium lacus.


Assuntos
Ecossistema , Methanobacterium/classificação , Filogenia , Microbiologia do Solo , Alaska , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Methanobacterium/genética , Methanobacterium/isolamento & purificação , Dados de Sequência Molecular , New York , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
ISME J ; 8(2): 309-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24048225

RESUMO

The sea squirt Ciona intestinalis is a well-studied model organism in developmental biology, yet little is known about its associated bacterial community. In this study, a combination of 454 pyrosequencing of 16S ribosomal RNA genes, catalyzed reporter deposition-fluorescence in situ hybridization and bacterial culture were used to characterize the bacteria living inside and on the exterior coating, or tunic, of C. intestinalis adults. The 454 sequencing data set demonstrated that the tunic bacterial community structure is different from that of the surrounding seawater. The observed tunic bacterial consortium contained a shared community of <10 abundant bacterial phylotypes across three individuals. Culture experiments yielded four bacterial strains that were also dominant groups in the 454 sequencing data set, including novel representatives of the classes Alphaproteobacteria and Flavobacteria. The relatively simple bacterial community and availability of dominant community members in culture make C. intestinalis a promising system in which to investigate functional interactions between host-associated microbiota and the development of host innate immunity.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biodiversidade , Ciona intestinalis/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
20.
Environ Sci Technol ; 47(21): 12374-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24033278

RESUMO

Ethene is considered recalcitrant under anaerobic conditions, but biological reduction to ethane and oxidation to CO2 have been reported; however, little is known about these processes or the organisms carrying them out. In this report we describe sulfate dependent ethene consumption in microcosms prepared with sediments from a freshwater canal. A first dose of 0.6 mmol/L ethene was consumed within 77 days, and a second dose was largely consumed twelve days later. Material from this microcosm was transferred into growth medium with ethene as the only electron donor (except for trace amounts of vitamins) and sulfate as the electron acceptor. Four doses of ethene were consumed at increasing rates, and the cultures have been transferred at least eight times in this medium. Conversion of [(14)C]ethene primarily to (14)CO2 was demonstrated in fifth and sixth generation cultures, as well as production of sulfide in other cultures, confirming the ethene/sulfate couple. Ovoid cells 1-2 µm in diameter were found in cultures containing ethene and sulfate, and quantitative PCR showed large increases in bacterial 16S rRNA gene copy number. Over half of a 16S rRNA gene clone library from a sixth-generation culture was a phylotype with a sequence ca. 90% identical with a clade of Deltaproteobacteria that includes Desulfovirga adipica and several Syntrophobacter spp. These studies have solidified the concept that deficits in mass balances for chloroethene fate in sulfate reducing zones of contaminated groundwater sites may be due to ethene oxidation, and suggest a unique phylotype is involved in this process.


Assuntos
Bactérias/metabolismo , Etilenos/metabolismo , Sulfatos/metabolismo , Anaerobiose , Biodegradação Ambiental , Radioisótopos de Carbono , Sedimentos Geológicos/microbiologia , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...