Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062938

RESUMO

Implementing sustainable crop protection practices is crucial to protect global harvests and ensure high-quality food supplies. While priming is an established method in seed production for the fortification of plants against various stresses, it is not yet a standard practice in transplant cultivation. Thus, we evaluated the long-term effects of thermopriming-a heat-based priming technique-on the growth, development, and fruit yield of tomato plants. Following a recovery period of about six weeks for thermoprimed plants without stress inducers, we subjected them to subsequent salt stress to ascertain the persistence of the priming effects. Additionally, we compared the efficacy of thermopriming with benzothiadiazole (BTH), a chemical elicitor, in enhancing plant resilience to abiotic stress. While BTH application negatively impacted both plant growth and fruit health, thermopriming showed no such adverse effects on these parameters. Instead, thermopriming initially enhanced the plant defense mechanisms by increasing the accumulation of protective phenols and flavonoids in the leaves. Interestingly, while thermopriming did not alter the response to salt stress, it notably strengthened the overall resilience of the plants. Our findings underscore both the potential and temporal constraints of thermopriming memory. Nonetheless, primed plants exhibited temporarily increased stress tolerance, offering a means to safeguard the offspring.


Assuntos
Agricultura , Produtos Agrícolas , Temperatura Alta , Estresse Salino , Solanum lycopersicum , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Estresse Salino/fisiologia , Tiadiazóis/farmacologia , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Frutas/química , Frutas/efeitos dos fármacos
2.
Metabolites ; 14(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668341

RESUMO

Global plant production is challenged by unpredictable (a)biotic stresses that occur individually, simultaneously or staggered. Due to an increasing demand for environmentally friendly plant production, new sustainable, universal, and preventive measures in crop protection are needed. We postulate thermopriming as a suitable procedure that fulfills these requirements. Therefore, we performed thermopriming as a pre-conditioning on tomato transplants in combination with two subsequent salt stress treatments to evaluate their single and combined physiological effects on leaves and fruits with regard to plant performance, fruit yield and quality. We identified a cross-tolerance to salinity that was triggered by the preceding thermopriming treatment and resulted in an accumulation of phenols and flavonols in the leaves. Plant growth and fruit yield were initially delayed after the stress treatments but recovered later. In regard to fruit quality, we found an increase in carotenoid and starch contents in fruits due to thermopriming, while sugars and titratable acidity were not affected. Our results indicate that thermopriming can mitigate the impact of subsequent and recurrent stress events on plant performance and yield under production-like conditions.

3.
Food Chem ; 416: 135601, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907011

RESUMO

Anthocyanins in red cabbage, sweet potato, and Tradescantia pallida leaves were characterised. A total of 18 non-, mono-, and diacylated cyanidins was identified in red cabbage by high performance liquid chromatography-diode array detection coupled to high-resolution and multi-stage mass spectrometry. Sweet potato leaves contained 16 different cyanidin- and peonidin glycosides being predominantly mono- and diacylated. In T. pallida leaves, the tetra-acylated anthocyanin tradescantin prevailed. The large proportion of acylated anthocyanins resulted in a superior thermal stability during heating of aqueous model solutions (pH 3.0) coloured with red cabbage and purple sweet potato extracts as compared to that of a commercial Hibiscus-based food dye. However, their stability was still outperformed by that of the most stable Tradescantia extract. Comparing vis spectra from pH 1-10, the latter had an additional, uncommon absorption maximum at approx. 585 nm at slightly acidic to neutral pH values, yielding intensely red to purple colours.


Assuntos
Brassica , Corantes de Alimentos , Ipomoea batatas , Tradescantia , Antocianinas/análise , Espectrometria de Massas em Tandem , Ipomoea batatas/química , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química
4.
Tree Physiol ; 39(10): 1646-1664, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274162

RESUMO

Maintaining xylem water transport under drought is vital for plants, but xylem failure does occur when drought-induced embolisms form and progressively spread through the xylem. The hydraulic method is widely considered the gold standard to quantify drought-induced xylem embolism. The method determines hydraulic conductivity (Kh) in cut branch samples, dehydrated to specific drought levels, by pushing water through them. The technique is widely considered for its reliable Kh measurements, but there is some uncertainty in the literature over how to define stable Kh and how that relates to the degree of xylem embolism formation. Therefore, the most common setup for this method was extended to measure four parameters: (i) inlet Kh, (ii) outlet Kh, (iii) radial flow from xylem to surrounding living tissue and (iv) the pressure difference across the sample. From a strictly theoretical viewpoint, hydraulic steady state, where inflow equals outflow and radial flow is zero, will result in stable Kh. Application of the setup to Malus domestica Borkh. branches showed that achieving hydraulic steady state takes considerable time (up to 300 min) and that time to reach steady state increased with declining xylem water potentials. During each experimental run, Kh and xylem water potentials dynamically increased, which was supported by X-ray computed microtomography visualizations of embolism refilling under both high- (8 kPa) and low-pressure (2 kPa) heads. Supplying pressurized water can hence cause artificial refilling of vessels, which makes it difficult to achieve a truly stable Kh in partially embolized xylem.


Assuntos
Secas , Embolia , Humanos , Água , Microtomografia por Raio-X , Xilema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA