Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 32(6): 654-672, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30520677

RESUMO

Insect galls are highly specialized structures arising from atypical development of plant tissue induced by insects. Galls provide the insect enhanced nutrition and protection against natural enemies and environmental stresses. Galls are essentially plant organs formed by an intimate biochemical interaction between the gall-inducing insect and its host plant. Because galls are plant organs, their development is likely to be governed by phytohormones involved in normal organogenesis. We characterized concentrations of both growth and defensive phytohormones in ungalled control leaves and galls induced by the aphid Pemphigus betae on narrowleaf cottonwood Populus angustifolia that differ genotypically in resistance to this insect. We found that susceptible trees differed from resistant trees in constitutive concentrations of both growth and defense phytohormones. Susceptible trees were characterized by significantly higher constitutive cytokinin concentrations in leaves, significantly greater ability of aphids to elicit cytokinin increases, and significantly lower constitutive defense phytohormone concentrations than observed in resistant trees. Phytohormone concentrations in both constitutive and induced responses in galled leaves exhibited high broad-sense heritability that, respectively, ranged from 0.39 to 0.93 and from 0.28 to 0.66, suggesting that selection can act upon these traits and that they might vary across the landscape. Increased cytokinin concentrations may facilitate forming strong photosynthate sinks in the galls, a requirement for galling insect success. By characterizing for the first time the changes in 15 phytohormones belonging to five different classes, this study offers a better overview of the signaling alteration occurring in galls that has likely been important for their ecology and evolution. Copyright © 2019 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .


Assuntos
Afídeos , Genótipo , Interações Hospedeiro-Parasita , Reguladores de Crescimento de Plantas , Tumores de Planta , Populus , Animais , Afídeos/fisiologia , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/genética , Populus/genética , Populus/parasitologia
2.
Ecol Evol ; 8(7): 3726-3737, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29686853

RESUMO

Genomic studies have been used to identify genes underlying many important plant secondary metabolic pathways. However, genes for salicinoid phenolic glycosides (SPGs)-ecologically important compounds with significant commercial, cultural, and medicinal applications-remain largely undescribed. We used a linkage map derived from a full-sib population of hybrid cottonwoods (Populus spp.) to search for quantitative trait loci (QTL) for the SPGs salicortin and HCH-salicortin. SSR markers and primer sequences were used to anchor the map to the V3.0 P. trichocarpa genome. We discovered 21 QTL for the two traits, including a major QTL for HCH-salicortin (R2 = .52) that colocated with a QTL for salicortin on chr12. Using the V3.0 Populus genome sequence, we identified 2,983 annotated genes and 1,480 genes of unknown function within our QTL intervals. We note ten candidate genes of interest, including a BAHD-type acyltransferase that has been potentially linked to Populus SPGs. Our results complement other recent studies in Populus with implications for gene discovery and the evolution of defensive chemistry in a model genus. To our knowledge, this is the first study to use a full-sib mapping population to identify QTL intervals and gene lists associated with SPGs.

3.
J Insect Physiol ; 84: 50-59, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518288

RESUMO

The identification of genes associated with ecologically important traits provides information on the potential genetic mechanisms underlying the responses of an organism to its natural environment. In this study, we investigated the genetic basis of host plant resistance to the gall-inducing aphid, Pemphigus betae, in a natural population of 154 narrowleaf cottonwoods (Populus angustifolia). We surveyed genetic variation in two genes putatively involved in sink-source relations and a phenology gene that co-located in a previously identified quantitative trait locus for resistance to galling. Using a candidate gene approach, three major findings emerged. First, natural variation in tree resistance to galling was repeatable. Sampling of the same tree genotypes 20 years after the initial survey in 1986 show that 80% of the variation in resistance was due to genetic differences among individuals. Second, we identified significant associations at the single nucleotide polymorphism and haplotype levels between the plant neutral invertase gene NIN1 and tree resistance. Invertases are a class of sucrose hydrolyzing enzymes and play an important role in plant responses to biotic stress, including the establishment of nutrient sinks. These associations with NIN1 were driven by a single nucleotide polymorphism (NIN1_664) located in the second intron of the gene and in an orthologous sequence to two known regulatory elements. Third, haplotypes from an inhibitor of invertase (C/VIF1) were significantly associated with tree resistance. The identification of genetic variation in these two genes provides a starting point to understand the possible genetic mechanisms that contribute to tree resistance to gall formation. We also build on previous work demonstrating that genetic differences in sink-source relationships of the host influence the ability of P. betae to manipulate the flow of nutrients and induce a nutrient sink.


Assuntos
Herbivoria , Imunidade Vegetal/genética , Populus/genética , Animais , Afídeos/fisiologia , Inibidores Enzimáticos , Genes de Plantas , Variação Genética , Haplótipos , Proteínas de Plantas/genética , Tumores de Planta/genética , Tumores de Planta/parasitologia , Polimorfismo de Nucleotídeo Único , beta-Frutofuranosidase/antagonistas & inibidores , beta-Frutofuranosidase/genética
4.
Plant Cell ; 27(9): 2370-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26320226

RESUMO

Altering gene dosage through variation in gene copy number is a powerful approach to addressing questions regarding gene regulation, quantitative trait loci, and heterosis, but one that is not easily applied to sexually transmitted species. Elite poplar (Populus spp) varieties are created through interspecific hybridization, followed by clonal propagation. Altered gene dosage relationships are believed to contribute to hybrid performance. Clonal propagation allows for replication and maintenance of meiotically unstable ploidy or structural variants and provides an alternative approach to investigating gene dosage effects not possible in sexually propagated species. Here, we built a genome-wide structural variation system for dosage-based functional genomics and breeding of poplar. We pollinated Populus deltoides with gamma-irradiated Populus nigra pollen to produce >500 F1 seedlings containing dosage lesions in the form of deletions and insertions of chromosomal segments (indel mutations). Using high-precision dosage analysis, we detected indel mutations in ∼55% of the progeny. These indels varied in length, position, and number per individual, cumulatively tiling >99% of the genome, with an average of 10 indels per gene. Combined with future phenotype and transcriptome data, this population will provide an excellent resource for creating and characterizing dosage-based variation in poplar, including the contribution of dosage to quantitative traits and heterosis.


Assuntos
Dosagem de Genes , Genômica/métodos , Melhoramento Vegetal/métodos , Populus/genética , Raios gama , Genoma de Planta , Hibridização Genética , Mutação , Pólen/genética , Pólen/efeitos da radiação , Polimorfismo de Nucleotídeo Único , Triploidia
5.
Am J Bot ; 98(10): 1623-32, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21960550

RESUMO

PREMISE OF THE STUDY: Elucidating the factors that determine the abundance and distribution of species remains a central goal of ecology. It is well recognized that genetic differences among individual species can affect the distribution and species interactions of dependent taxa, but the ecological effects of genetic differences on taxa of the same trophic level remain much less understood. Our goal was to test the hypothesis that differences between related overstory tree species and their hybrids can influence the understory plant community in wild settings. METHODS: We conducted vegetation surveys in a riparian community with the overstory dominated by Populus fremontii, P. angustifolia, and their natural hybrids (referred to as cross types) along the Weber River in north central Utah, USA. Understory diversity and community composition, as well as edaphic properties, were compared under individual trees. KEY RESULTS: Diversity metrics differ under the three different tree cross types such that a greater species richness, diversity, and cover of understory plants exist under the hybrids compared with either of the parental taxa (30-54%, 40-48%, and 35-74% greater, respectively). The community composition of the understory also varied by cross type, whereby additional understory plant species cluster with hybrids, not with parental species. CONCLUSIONS: Genetic composition dictated by hybridization in the overstory can play a role in structuring the associated understory plants in natural communities-where a hybridized overstory correlates with a species-rich understory-and thus can have cascading effects on community members of the same trophic level. The underlying mechanism requires further investigation.


Assuntos
Biodiversidade , Hibridização Genética , Populus/genética , Árvores/genética , Cruzamentos Genéticos , Especificidade da Espécie
6.
Oecologia ; 167(3): 711-21, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21667296

RESUMO

We examined how the galling aphid Pemphigus batae manipulates resource translocation patterns of resistant and susceptible narrowleaf cottonwood Populus angustifolia. Using carbon-14 ((14)C)-labeling experiments in common garden trials, five patterns emerged. First, although aphid galls on resistant and susceptible genotypes did not differ in their capacity to intercept assimilates exported from the leaf they occupied, aphids sequestered 5.8-fold more assimilates from surrounding leaves on susceptible tree genotypes compared to resistant genotypes. Second, gall sinks on the same side of a shoot as a labeled leaf were 3.4-fold stronger than gall sinks on the opposite side of a shoot, which agrees with patterns of vascular connections among leaves of the same shoot (orthostichy). Third, plant genetic-based traits accounted for 26% of the variation in sink strength of gall sinks and 41% of the variation in sink strength of a plant's own bud sinks. Fourth, tree susceptibility to aphid gall formation accounted for 63% of the variation in (14)C import, suggesting strong genetic control of sink-source relationships. Fifth, competition between two galls was observed on a susceptible but not a resistant tree. On the susceptible tree distal aphids intercepted 1.5-fold more (14)C from the occupied leaf than did basal aphids, but basal aphids compensated for the presence of a distal competitor by almost doubling import to the gall from surrounding leaves. These findings and others, aimed at identifying candidate genes for resistance, argue the importance of including plant genetics in future studies of the manipulation of translocation patterns by phytophageous insects.


Assuntos
Afídeos/genética , Ecossistema , Folhas de Planta/genética , Brotos de Planta/genética , Populus/genética , Animais , Afídeos/fisiologia , Radioisótopos de Carbono , Comportamento Alimentar/fisiologia , Interações Hospedeiro-Parasita , Floema/metabolismo , Folhas de Planta/parasitologia , Folhas de Planta/fisiologia , Brotos de Planta/parasitologia , Brotos de Planta/fisiologia , Populus/parasitologia , Populus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...