Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 11(9): 875-890, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32180900

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphomas worldwide and is characterized by a high diversity of genetic and molecular alterations. Chromosomal translocations and mutations leading to deregulated expression of the transcriptional repressor BCL6 occur in a significant fraction of DLBCL patients. An oncogenic role of BCL6 in the initiation of DLBCL has been shown as the constitutive expression of BCL6 in mice recapitulates the pathogenesis of human DLBCL. However, the role of BCL6 in tumor maintenance remains poorly investigated due to the absence of suitable genetic models and limitations of pharmacological inhibitors. Here, we have utilized tetracycline-inducible CRISPR/Cas9 mutagenesis to study the consequences of BCL6 deletion in established DLBCL models in culture and in vivo. We show that BCL6 knock-out in SU-DHL-4 cells in vitro results in an anti-proliferative response 4-7 days after Cas9 induction that was characterized by cell cycle (G1) arrest. Conditional BCL6 deletion in established DLBCL tumors in vivo induced a significant tumor growth inhibition with initial tumor stasis followed by slow tumor growth kinetics. Our findings support a role of BCL6 in the maintenance of lymphoma growth and showcase the utility of inducible CRISPR/Cas9 systems for probing oncogene addiction.

2.
Cell ; 172(1-2): 373-386.e10, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29224780

RESUMO

Breast cancer (BC) comprises multiple distinct subtypes that differ genetically, pathologically, and clinically. Here, we describe a robust protocol for long-term culturing of human mammary epithelial organoids. Using this protocol, >100 primary and metastatic BC organoid lines were generated, broadly recapitulating the diversity of the disease. BC organoid morphologies typically matched the histopathology, hormone receptor status, and HER2 status of the original tumor. DNA copy number variations as well as sequence changes were consistent within tumor-organoid pairs and largely retained even after extended passaging. BC organoids furthermore populated all major gene-expression-based classification groups and allowed in vitro drug screens that were consistent with in vivo xeno-transplantations and patient response. This study describes a representative collection of well-characterized BC organoids available for cancer research and drug development, as well as a strategy to assess in vitro drug response in a personalized fashion.


Assuntos
Neoplasias da Mama/patologia , Heterogeneidade Genética , Organoides/patologia , Bancos de Tecidos , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Camundongos , Camundongos Nus , Organoides/efeitos dos fármacos , Medicina de Precisão/métodos
3.
Methods Mol Biol ; 821: 267-78, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22125071

RESUMO

The mammalian Target of Rapamycin (mTOR) kinase functions within two structurally and functionally distinct multiprotein complexes termed mTOR complex 1 (mTORC1) and mTORC2. The immunosuppressant and anticancer drug rapamycin is commonly used in basic research as a tool to study mTOR signaling. However, rapamycin inhibits only, and only incompletely, mTORC1, and no mTORC2-specific inhibitor is available. Hence, a full understanding of mTOR signaling in vivo, including the function of both complexes, requires genetic inhibition in addition to pharmacological inhibition. Taking advantage of the Cre/LoxP system, we generated inducible knockout mouse embryonic fibroblasts (MEFs) deficient for either the mTORC1-specific component raptor (iRapKO) or the mTORC2-specific component rictor (iRicKO). Inducibility of the knockout was important because mTOR complex components are essential. Induction of either raptor or rictor knockout eliminated raptor or rictor expression, respectively, and impaired the corresponding mTOR signaling branch. The described knockout MEFs are a valuable tool to study the full function of the two mTOR complexes individually.


Assuntos
Proteínas de Transporte/genética , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Transfecção/métodos , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Feminino , Feto/citologia , Vetores Genéticos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Gravidez , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Proteína Regulatória Associada a mTOR , Transdução de Sinais , Serina-Treonina Quinases TOR , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Fatores de Transcrição
4.
Cell ; 144(5): 757-68, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21376236

RESUMO

The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of growth. Mammalian TOR complex 2 (mTORC2) regulates AGC kinase family members and is implicated in various disorders, including cancer and diabetes. Here, we investigated the upstream regulation of mTORC2. A genetic screen in yeast and subsequent studies in mammalian cells revealed that ribosomes, but not protein synthesis, are required for mTORC2 signaling. Active mTORC2 was physically associated with the ribosome, and insulin-stimulated PI3K signaling promoted mTORC2-ribosome binding, suggesting that ribosomes activate mTORC2 directly. Findings with melanoma and colon cancer cells suggest that mTORC2-ribosome association is important in oncogenic PI3K signaling. Thus, TORC2-ribosome interaction is a likely conserved mechanism of TORC2 activation that is physiologically relevant in both normal and cancer cells. As ribosome content determines growth capacity of a cell, this mechanism of TORC2 regulation ensures that TORC2 is active only in growing cells.


Assuntos
Complexos Multiproteicos/metabolismo , Ribossomos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Saccharomyces cerevisiae/metabolismo
5.
PLoS Comput Biol ; 6(5): e1000783, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20485558

RESUMO

Eukaryotic genomes are duplicated from multiple replication origins exactly once per cell cycle. In Saccharomyces cerevisiae, a complex molecular network has been identified that governs the assembly of the replication machinery. Here we develop a mathematical model that links the dynamics of this network to its performance in terms of rate and coherence of origin activation events, number of activated origins, the resulting distribution of replicon sizes and robustness against DNA rereplication. To parameterize the model, we use measured protein expression data and systematically generate kinetic parameter sets by optimizing the coherence of origin firing. While randomly parameterized networks yield unrealistically slow kinetics of replication initiation, networks with optimized parameters account for the experimentally observed distribution of origin firing times. Efficient inhibition of DNA rereplication emerges as a constraint that limits the rate at which replication can be initiated. In addition to the separation between origin licensing and firing, a time delay between the activation of S phase cyclin-dependent kinase (S-Cdk) and the initiation of DNA replication is required for preventing rereplication. Our analysis suggests that distributive multisite phosphorylation of the S-Cdk targets Sld2 and Sld3 can generate both a robust time delay and contribute to switch-like, coherent activation of replication origins. The proposed catalytic function of the complex formed by Dpb11, Sld3 and Sld2 strongly enhances coherence and robustness of origin firing. The model rationalizes how experimentally observed inefficient replication from fewer origins is caused by premature activation of S-Cdk, while premature activity of the S-Cdk targets Sld2 and Sld3 results in DNA rereplication. Thus the model demonstrates how kinetic deregulation of the molecular network governing DNA replication may result in genomic instability.


Assuntos
Replicação do DNA , DNA Fúngico/biossíntese , Modelos Genéticos , Saccharomyces cerevisiae/genética , Quinases Ciclina-Dependentes/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/metabolismo , Fosforilação , Origem de Replicação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
7.
Biochem Biophys Res Commun ; 359(4): 921-7, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17574209

RESUMO

Protein kinase CK2 is a heterotetramer composed of two catalytic and two regulatory subunits. In Saccharomyces cerevisiae the catalytic subunits (alpha and alpha') are encoded by the CKA1, CKA2 genes. cka1Deltacka2(ts) mutants arrest cell cycle in both G1 and G2/M at 37 degrees C. Hence, it has been proposed that CK2 plays an important role in cell-cycle progression and several cell-cycle proteins have been reported to be CK2 substrates. We have previously shown that Sic1, the inhibitor of Clb5-Cdc28 complexes required for the G1/S transition, is a physiologically relevant CK2 substrate. Here we show that CK2 inactivation up-regulates Sic1 level resulting in severe down-regulation of Clb5-Cdc28 kinase activity. Concurrent inactivation of Sic1 and CK2 leads to accumulation of cells with a post-synthetic DNA content and short/elongated spindles, typical of cells arrested in mitosis. These findings indicate that Sic1 plays a major role during G1 arrest of CK2-inactivated cells.


Assuntos
Apoptose/fisiologia , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina , Regulação Fúngica da Expressão Gênica/fisiologia
8.
Mol Microbiol ; 63(5): 1482-94, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17302822

RESUMO

The rapamycin-sensitive (TOR) signalling pathway in Saccharomyces cerevisiae controls growth and cell proliferation in response to nutrient availability. Rapamycin treatment causes cells to arrest growth in G1 phase. The mechanism by which the inhibition of the TOR pathway regulates cell cycle progression is not completely understood. Here we show that rapamycin causes G1 arrest by a dual mechanism that comprises downregulation of the G1-cyclins Cln1-3 and upregulation of the Cdk inhibitor protein Sic1. The increase of Sic1 level is mostly independent of the downregulation of the G1 cyclins, being unaffected by ectopic CLN2 expression, but requires Sic1 phosphorylation of Thr173, because it is lost in cells expressing Sic1(T173A). Rapamycin-mediated Sic1 upregulation involves nuclear accumulation of a more stable, non-ubiquitinated protein. Either SIC1 deletion or CLN3 overexpression results in non-cell-cycle-specific arrest upon rapamycin treatment and makes cells sensitive to a sublethal dose of rapamycin and to nutrient starvation. In conclusion, our data indicate that Sic1 is involved in rapamycin-induced G1 arrest and that deregulated entrance into S phase severely decreases the ability of a cell to cope with starvation conditions induced by nutrient depletion or which are mimicked by rapamycin treatment.


Assuntos
Antifúngicos/farmacologia , Ciclinas/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/efeitos dos fármacos , Sirolimo/farmacologia , Ciclo Celular/genética , Núcleo Celular/química , Proteínas Inibidoras de Quinase Dependente de Ciclina , Citoplasma/química , Fase G1 , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
9.
Biochem Biophys Res Commun ; 346(3): 786-93, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16777072

RESUMO

We have previously identified Ser201 of Sic1, a yeast cyclin-dependent kinase inhibitor, as an in vitro target of protein kinase CK2. Here we present new evidence, by using specific anti-P-Ser201 antibodies and 2-D gel electrophoresis coupled to MALDI mass spectrometry analysis, that Sic1 is phosphorylated in vivo on Ser201 shortly after its de novo synthesis, during late anaphase in glucose-grown cells. This phosphorylation is also detected in Sic1 immunopurified from G1 cells. In agreement with these data we also show that the catalytic alpha' subunit of CK2, whose function is required for cell cycle progression, is detected in Sic1 immunopurified complexes, and that phosphorylation on Ser201 is reduced after CK2 inactivation at the non-permissive temperature in a cka1delta cka2(ts) yeast strain. These data strongly support the notion that CK2 phosphorylates Sic1 in vivo.


Assuntos
Caseína Quinase II/metabolismo , Fosfosserina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Ciclo Celular , Proteínas Inibidoras de Quinase Dependente de Ciclina , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Cell Cycle ; 4(12): 1798-807, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16294029

RESUMO

The cyclin dependent kinase inhibitor Sic1 and the cyclin Clb5 are essential regulators of the cyclin dependent kinase Cdc28 during the G1 to S transition in budding yeast. Yeast enters S phase after ubiquitin-mediated degradation of Sic1, an event triggered by Cln1, 2-Cdc28 mediated phosphorylation. We recently showed that Sic1 is involved in carbon source modulation of the critical cell size required to enter S phase. Here we show that the amount and sub-cellular localization of Sic1 are also carbon source-modulated. We identify a bipartite nuclear localization sequence responsible for nuclear localization of Sic1 and for correct cell cycle progression in a carbon-source dependent manner. Similarly to Cip/Kip proteins-Sic1 mammalian counterparts-Sic1 facilitates nuclear accumulation of its cognate cyclin, since cytoplasmic building-up of Clb5 is observed upon switching off expression of the SIC1 gene. Our data indicate a previously unrecognized inhibitor/activator dual role for Sic1 and put it among key molecules whose activity is regulated by their nuclear-cytoplasmic localization.


Assuntos
Carbono/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Transporte Ativo do Núcleo Celular , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Ciclina B/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina , Regulação Fúngica da Expressão Gênica/genética , Modelos Biológicos , Sinais de Localização Nuclear/química , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomycetales/citologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...