Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(7): 076002, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656857

RESUMO

Superfluid helium nanodroplets are an ideal environment for the formation of metastable, self-organized dopant nanostructures. However, the presence of vortices often hinders their formation. Here, we demonstrate the generation of vortex-free helium nanodroplets and explore the size range in which they can be produced. From x-ray diffraction images of xenon-doped droplets, we identify that single compact structures, assigned to vortex-free aggregation, prevail up to 10^{8} atoms per droplet. This finding builds the basis for exploring the assembly of far-from-equilibrium nanostructures at low temperatures.

2.
J Mater Chem B ; 11(29): 6823-6836, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358016

RESUMO

The outspread of bacterial pathogens causing severe infections and spreading rapidly, especially among hospitalized patients, is worrying and represents a global public health issue. Current disinfection techniques are becoming insufficient to counteract the spread of these pathogens because they carry multiple antibiotic-resistance genes. For this reason, a constant need exists for new technological solutions that rely on physical methods rather than chemicals. Nanotechnology support provides novel and unexplored opportunities to boost groundbreaking, next-gen solutions. With the help of plasmonic-assisted nanomaterials, we present and discuss our findings in innovative bacterial disinfection techniques. Gold nanorods (AuNRs) immobilized on rigid substrates are utilized as efficient white light-to-heat transducers (thermoplasmonic effect) for photo-thermal (PT) disinfection. The resulting AuNRs array shows a high sensitivity change in refractive index and an extraordinary capability in converting white light to heat, producing a temperature change greater than 50 °C in a few minute interval illumination time. Results were validated using a theoretical approach based on a diffusive heat transfer model. Experiments performed with a strain of Escherichia coli as a model microorganism confirm the excellent capability of the AuNRs array to reduce the bacteria viability upon white light illumination. Conversely, the E. coli cells remain viable without white light illumination, which also confirms the lack of intrinsic toxicity of the AuNRs array. The PT transduction capability of the AuNRs array is utilized to produce white light heating of medical tools used during surgical treatments, generating a temperature increase that can be controlled and is suitable for disinfection. Our findings are pioneering a new opportunity for healthcare facilities since the reported methodology allows non-hazardous disinfection of medical devices by simply employing a conventional white light lamp.


Assuntos
Escherichia coli , Nanotubos , Humanos , Desinfecção/métodos , Nanotubos/química , Luz , Ouro/química
3.
J Synchrotron Radiat ; 30(Pt 2): 457-467, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36891860

RESUMO

The Small Quantum Systems instrument is one of the six operating instruments of the European XFEL, dedicated to the atomic, molecular and cluster physics communities. The instrument started its user operation at the end of 2018 after a commissioning phase. The design and characterization of the beam transport system are described here. The X-ray optical components of the beamline are detailed, and the beamline performances, transmission and focusing capabilities are reported. It is shown that the X-ray beam can be effectively focused as predicted by ray-tracing simulations. The impact of non-ideal X-ray source conditions on the focusing performances is discussed.

4.
J Synchrotron Radiat ; 29(Pt 3): 755-764, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511008

RESUMO

A set of electron time-of-flight spectrometers for high-resolution angle-resolved spectroscopy was developed for the Small Quantum Systems (SQS) instrument at the SASE3 soft X-ray branch of the European XFEL. The resolving power of this spectrometer design is demonstrated to exceed 10 000 (E/ΔE), using the well known Ne 1s-13p resonant Auger spectrum measured at a photon energy of 867.11 eV at a third-generation synchrotron radiation source. At the European XFEL, a width of ∼0.5 eV full width at half-maximum for a kinetic energy of 800 eV was demonstrated. It is expected that this linewidth can be reached over a broad range of kinetic energies. An array of these spectrometers, with different angular orientations, is tailored for the Atomic-like Quantum Systems endstation for high-resolution angle-resolved spectroscopy of gaseous samples.

5.
Materials (Basel) ; 15(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268858

RESUMO

The status of metrology for the characterization of thermoelectric generator modules (TEM) is investigated in this work by an international round robin (RR) test including twelve laboratories from nine countries on three continents. Measurements have been performed with three samples of a Bi2Te3-based commercial TEM type, which has prevailed over three competing types during previous tests on the short- and long-term stability. A comparison of temperature-dependent results is provided up to 200 °C hot side temperature for the maximum power output Pmax, the incident heat flow Q˙In (at maximum efficiency conditions), and the maximum efficiency ηmax. Data evaluation from all RR participants reveals maximum standard deviations for these measurands of 27.2% (Pmax), 59.2% (Q˙In), and 25.9% (ηmax). A comparison between RR data sets and reference data from manufacturer specifications shows high deviations of up to 46%, too. These deviations reflect the absence of measurement guidelines and reference samples and confirm the need for improvements in the standardization of TEM metrology. Accordingly, the results of the RR are presented against the background of our own investigations on the uncertainty budgets for the determination of the abovementioned TEM properties using inhouse-developed characterization facilities, which comprise reference and absolute measurement techniques for the determination of heat flow.

6.
PLoS One ; 17(1): e0262236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35020771

RESUMO

Wild birds can be colonized by bacteria, which are often resistant to antibiotics and have various virulence profiles. The aim of this study was to analyze antibiotic resistance mechanisms and virulence profiles in relation to the phylogenetic group of E. coli strains that were isolated from the GI tract of wildfowl. Out of 241 faecal samples, presence of E. coli resistant to a cephalosporin (ESBL/AmpC) was estimated for 33 isolates (13,7%). Based on the analysis of the coexistence of 4 genes encoding ESBLs/AmpC (blaCTX-M, blaTEM, blaSHV, blaAmpC) and class 1 and 2 integrons genes (intI1, intI2) a subset of two resistance profiles was observed among the investigated E. coli isolates carrying blaAmpC, blaSHV, and blaCTX-M, blaTEM, class 1 and 2 integrons, respectively. The E. coli isolates were categorized into 4 phylogenetic groups A (39.4%), B2 (24.25%), D (24.25%) and B1 (12.1%). The pathogenic B2 and D groups were mainly typical for the Laridae family. Among the 28 virulence factors (Vfs) detected in pathogenic phylogenetic groups B2 and D, 7 were exclusively found in those groups (sfa, vat, tosA, tosB, hly, usp, cnf), while 4 VFs (fecA, fyuA, irp2, kspMTII) showed a statistically significant association (P≤0.05) with phylogroups A and B1. Our results indicated that strains belonging to commensal phylogroups A/B1 possess extensive iron acquisition systems (93,9%) and autotransporters (60,6%), typical for pathogens, hence we suggest that these strains evolve towards higher levels of virulence. This study, which is a point assessment of the virulence and drug resistance potential of wild birds, confirms the importance of taking wild birds as a reservoir of strains that pose a growing threat to humans. The E. coli analyzed in our study derive from different phylogenetic groups and possess an arsenal of antibiotic resistance genes and virulence factors that contribute to their ability to cause diseases.


Assuntos
Animais Selvagens/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/classificação , Virulência/genética , Animais , Aves , Ecossistema , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Filogenia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
7.
ACS Appl Mater Interfaces ; 14(1): 1270-1279, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34979804

RESUMO

Charge carrier transport and corresponding thermoelectric properties are often affected by several parameters, necessitating a thorough comparative study for a profound understanding of the detailed conduction mechanism. Here, as a model system, we compare the electronic transport properties of two layered semiconductors, Sb2Si2Te6 and Bi2Si2Te6. Both materials have similar grain sizes and morphologies, yet their conduction characteristics are significantly different. We found that phase boundary scattering can be one of the main factors for Bi2Si2Te6 to experience significant charge carrier scattering, whereas Sb2Si2Te6 is relatively unaffected by the phenomenon. Furthermore, extensive point defect scattering in Sb2Si2Te6 significantly reduces its lattice thermal conductivity and results in high zT values across a broad temperature range. These findings provide novel insights into electron transport within these materials and should lead to strategies for further improving their thermoelectric performance.

8.
Opt Express ; 29(23): 37429-37442, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808814

RESUMO

This contribution presents the initial characterization of the pump-probe performance at the Small Quantum Systems (SQS) instrument of the European X-ray Free Electron Laser. It is demonstrated that time-resolved experiments can be performed by measuring the X-ray/optical cross-correlation exploiting the laser-assisted Auger decay in neon. Applying time-of-arrival corrections based on simultaneous spectral encoding measurements allow us to significantly improve the temporal resolution of this experiment. These results pave the way for ultrafast pump-probe investigations of gaseous media at the SQS instrument combining intense and tunable soft X-rays with versatile optical laser capabilities.

9.
Phys Rev Lett ; 125(16): 163201, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33124863

RESUMO

We report on a multiparticle coincidence experiment performed at the European X-ray Free-Electron Laser at the Small Quantum Systems instrument using a COLTRIMS reaction microscope. By measuring two ions and two electrons in coincidence, we investigate double core-hole generation in O_{2} molecules in the gas phase. Single-site and two-site double core holes have been identified and their molecular-frame electron angular distributions have been obtained for a breakup of the oxygen molecule into two doubly charged ions. The measured distributions are compared to results of calculations performed within the frozen- and relaxed-core Hartree-Fock approximations.

10.
ACS Comb Sci ; 21(5): 362-369, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30822380

RESUMO

The thin film system Ti-Ni-Si was investigated using methods of combinatorial materials science. A thin film composition spread library of the system was fabricated using combinatorial magnetron sputtering. The functional properties Seebeck coefficient, electrical resistivity, and luminance were determined using high-throughput characterization techniques. A thin-film phase diagram was established by the assessment of high-throughput X-ray diffraction results. Correlations between composition, phase constitution, and functional properties with focus on the binary composition space are discussed.


Assuntos
Ligas/química , Níquel/química , Silício/química , Titânio/química , Técnicas de Química Combinatória , Condutividade Elétrica , Ensaios de Triagem em Larga Escala , Teste de Materiais , Estrutura Molecular , Relação Estrutura-Atividade , Difração de Raios X
11.
ACS Comb Sci ; 20(1): 1-18, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29266920

RESUMO

In view of the variety and complexity of thermoelectric (TE) material systems, combinatorial approaches to materials development come to the fore for identifying new promising compounds. The success of this approach is related to the availability and reliability of high-throughput characterization methods for identifying interrelations between materials structures and properties within the composition spread libraries. A meaningful characterization starts with determination of the Seebeck coefficient as a major feature of TE materials. Its measurement, and hence the accuracy and detectability of promising material compositions, may be strongly affected by thermal and electrical measurement conditions. This work illustrates the interrelated effects of the substrate material, the layer thickness, and spatial property distributions of thin film composition spread libraries, which are studied experimentally by local thermopower scans by means of the Potential and Seebeck Microprobe (PSM). The study is complemented by numerical evaluation. Material libraries of the half-Heusler compound system Ti-Ni-Sn were deposited on selected substrates (Si, AlN, Al2O3) by magnetron sputtering. Assuming homogeneous properties of a film, significant decrease of the detected thermopower Sm can be expected on substrates with higher thermal conductivity, yielding an underestimation of materials thermopower between 15% and 50%, according to FEM (finite element methods) simulations. Thermally poor conducting substrates provide a better accuracy with thermopower underestimates lower than 8%, but suffer from a lower spatial resolution. According to FEM simulations, local scanning of sharp thermopower peaks on lowly conductive substrates is linked to an additional deviation of the measured thermopower of up to 70% compared to homogeneous films, which is 66% higher than for corresponding cases on substrates with higher thermal conductivity of this study.


Assuntos
Técnicas de Química Combinatória/métodos , Teste de Materiais/métodos , Compostos de Alumínio/química , Óxido de Alumínio/química , Condutividade Elétrica , Teste de Materiais/instrumentação , Níquel/química , Silício/química , Condutividade Térmica , Estanho/química
12.
J Phys Condens Matter ; 23(26): 265501, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21666304

RESUMO

In a previous paper (Sonntag 2010 J. Phys.: Condens. Matter 22 235501) the classical thermopower formula has been argued to be incomplete, because it only takes into account the scattering properties of the carriers, but not the temperature dependence of the electrochemical potential µ caused by variation of the carrier density and/or band edge shift with temperature T. This argument is now checked experimentally by high-throughput measurements of the thermopower (Seebeck coefficient) S of a-(Cr(1-x)Si(x))(1-y)O(y) thin film materials libraries. The concentration dependences of S differ depending on whether the measurements are done with the complete film (where x ranges continuously from x≈0.3 to 0.8; y≈0.1-0.2) or with the separated pieces (each piece with another average value of x). These differences are especially large if, in addition, an oxygen gradient is present.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...