Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 371: 158-178, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782062

RESUMO

Glycosylated nanoplatforms have emerged as promising tools in the field of cancer theranostics, integrating both therapeutic and diagnostic functionalities. These nanoscale platforms are composed of different materials such as lipids, polymers, carbons, and metals that can be modified with glycosyl moieties to enhance their targeting capabilities towards cancer cells. This review provides an overview of different modification strategies employed to introduce glycosylation onto nanoplatforms, including chemical conjugation, enzymatic methods, and bio-orthogonal reactions. Furthermore, the potential applications of glycosylated nanoplatforms in cancer theranostics are discussed, focusing on their roles in drug delivery, imaging, and combination therapy. The ability of these nanoplatforms to selectively target cancer cells through specific interactions with overexpressed glycan receptors is highlighted, emphasizing their potential for enhancing efficacy and reducing the side effects compared to conventional therapies. In addition, the incorporation of diagnostic components onto the glycosylated nanoplatforms provided the capability of simultaneous imaging and therapy and facilitated the real-time monitoring of treatment response. Finally, challenges and future perspectives in the development and translation of glycosylated nanoplatforms for clinical applications are addressed, including scalability, biocompatibility, and regulatory considerations. Overall, this review underscores the significant progress made in the field of glycosylated nanoplatforms and their potential to revolutionize cancer theranostics.


Assuntos
Neoplasias , Nanomedicina Teranóstica , Humanos , Glicosilação , Neoplasias/terapia , Neoplasias/diagnóstico , Neoplasias/metabolismo , Nanomedicina Teranóstica/métodos , Animais , Sistemas de Liberação de Medicamentos , Nanopartículas , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico
2.
Crit Rev Biotechnol ; : 1-32, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442771

RESUMO

3D bioprinting is an advanced technology combining cells and bioactive molecules within a single bioscaffold; however, this scaffold cannot change, modify or grow in response to a dynamic implemented environment. Lately, a new era of smart polymers and hydrogels has emerged, which can add another dimension, e.g., time to 3D bioprinting, to address some of the current approaches' limitations. This concept is indicated as 4D bioprinting. This approach may assist in fabricating tissue-like structures with a configuration and function that mimic the natural tissue. These scaffolds can change and reform as the tissue are transformed with the potential of specific drug or biomolecules released for various biomedical applications, such as biosensing, wound healing, soft robotics, drug delivery, and tissue engineering, though 4D bioprinting is still in its early stages and more works are required to advance it. In this review article, the critical challenge in the field of 4D bioprinting and transformations from 3D bioprinting to 4D phases is reviewed. Also, the mechanistic aspects from the chemistry and material science point of view are discussed too.

3.
Int J Biol Macromol ; 216: 605-617, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809673

RESUMO

Pectin has recently attracted increasing attention as an alternative biomaterial commonly used in biomedical and pharmaceutical fields. It shows several promising properties, including good biocompatibility, health benefits, nontoxicity, and biodegradation. In this research, novel nanocomposite fibers composed of folic acid-decorated carbon dots (CDs) in pectin/PEO matrix were fabricated using the electrospinning technique, which was never reported previously. Nitrogen-doped and nitrogen, sulfur-doped CDs were synthesized with average diameters of 2.74 nm and 2.17 nm using the one-step hydrothermal method, studied regarding their physicochemical, optical, and biocompatibility properties. The relative Quantum yields of N-CDs and N, S doped CDs were measured to be 54.7 % and 30.2 %, respectively. Nanocomposite fibers containing CDs were prepared, and their morphology, physicochemical properties, conductivity, drug release behavior, and cell viability were characterized. The results indicated that CDs improve fibrous scaffolds' tensile strength from 13.74 to 35.22 MPa while maintaining comparable extensibility. Furthermore, by incorporation of CDs in the prepared fibers conductivity enhanced from 8.69 × 10-9 S·m-1 to 1.36 × 10-4 S·m-1. The nanocomposite fibrous scaffold was also biocompatible with controlled drug release over 212 h, potentially promising tissue regeneration.


Assuntos
Nanocompostos , Pontos Quânticos , Carbono/química , Corantes Fluorescentes/química , Ácido Fólico , Nitrogênio/química , Pectinas , Pontos Quânticos/química
4.
Int J Biol Macromol ; 173: 351-365, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33450340

RESUMO

Pectin has been regarded as a drug carrier accelerating the healing process due to its bioactivities, abundance and lower cost of resources. However, a big challenge related to its practical application is its poor mechanical strength. In this study the modified Cu-based MOF containing Folic acid was synthesized and incorporated in the suitable pectin electrospun nanofibers which not only improved the copper ions release behavior but also made the fiber mat stronger, antibacterial and induce angiogenesis, fibroblast migration, and proliferation due to loaded copper ions and folic acid. The nanofibers composing of 75% pectin and 4000 kDa -PEO were chosen after morphological and mechanical characterization. Finally, the effect of MOF incorporation on the nanocomposite samples was characterized in terms of morphological, physiochemical and biological properties. The nanofibrous mats were evaluated by tensile testing, antibacterial and cytotoxicity. The release behavior of copper ions and folic acid was controlled and their burst release alleviated reducing cytotoxicity in vitro. It was found that the Young's moduli of the pectin nanofibers were improved to 19.13 MPa by the addition of Cu-based MOFs. Moreover, nanocomposite pectin nanofibers were found to be antibacterial and biocompatible. These results demonstrate that MOF-contained pectin nanofibers are promising for biomedical applications.


Assuntos
Antibacterianos/farmacologia , Cobre/farmacologia , Ácido Fólico/farmacologia , Estruturas Metalorgânicas/farmacologia , Pectinas/química , Animais , Antibacterianos/química , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citrus/química , Cobre/química , Sistemas de Liberação de Medicamentos , Módulo de Elasticidade , Escherichia coli/efeitos dos fármacos , Ácido Fólico/química , Estruturas Metalorgânicas/química , Camundongos , Nanocompostos , Nanofibras , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA