Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Space Sci Rev ; 219(2): 18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874191

RESUMO

A detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.

2.
Geophys Res Lett ; 49(9): e2022GL098111, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35864892

RESUMO

Water-group gas continuously escapes from Jupiter's icy moons to form co-orbiting populations of particles or neutral toroidal clouds. These clouds provide insights into their source moons as they reveal loss processes and compositions of their parent bodies, alter local plasma composition, and act as sources and sinks for magnetospheric particles. We report the first observations of H2 + pickup ions in Jupiter's magnetosphere from 13 to 18 Jovian radii and find a density ratio of H2 +/H+ = 8 ± 4%, confirming the presence of a neutral H2 toroidal cloud. Pickup ion densities monotonically decrease radially beyond 13 R J consistent with an advecting Europa-genic toroidal cloud source. From these observations, we derive a total H2 neutral loss rate from Europa of 1.2 ± 0.7 kg s-1. This provides the most direct estimate of Europa's H2 neutral loss rate to date and underscores the importance of both ion composition and neutral toroidal clouds in understanding satellite-magnetosphere interactions.

3.
Space Sci Rev ; 218(4): 28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574273

RESUMO

Interstellar pickup ions are an ubiquitous and thermodynamically important component of the solar wind plasma in the heliosphere. These PUIs are born from the ionization of the interstellar neutral gas, consisting of hydrogen, helium, and trace amounts of heavier elements, in the solar wind as the heliosphere moves through the local interstellar medium. As cold interstellar neutral atoms become ionized, they form an energetic ring beam distribution comoving with the solar wind. Subsequent scattering in pitch angle by intrinsic and self-generated turbulence and their advection with the radially expanding solar wind leads to the formation of a filled-shell PUI distribution, whose density and pressure relative to the thermal solar wind ions grows with distance from the Sun. This paper reviews the history of in situ measurements of interstellar PUIs in the heliosphere. Starting with the first detection in the 1980s, interstellar PUIs were identified by their highly nonthermal distribution with a cutoff at twice the solar wind speed. Measurements of the PUI distribution shell cutoff and the He focusing cone, a downwind region of increased density formed by the solar gravity, have helped characterize the properties of the interstellar gas from near-Earth vantage points. The preferential heating of interstellar PUIs compared to the core solar wind has become evident in the existence of suprathermal PUI tails, the nonadiabatic cooling index of the PUI distribution, and PUIs' mediation of interplanetary shocks. Unlike the Voyager and Pioneer spacecraft, New Horizon's Solar Wind Around Pluto (SWAP) instrument is taking the only direct measurements of interstellar PUIs in the outer heliosphere, currently out to ∼ 47 au from the Sun or halfway to the heliospheric termination shock.

4.
Astrophys J Lett ; 911(2)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35198137

RESUMO

Direct sampling of interstellar neutral (ISN) atoms close to the Sun enables studies of the very local interstellar medium (VLISM) around the heliosphere. The primary population of ISN helium atoms has, until now, been assumed to reflect the pristine VLISM conditions at the heliopause. Consequently, the atoms observed at 1 au by the Interstellar Boundary Explorer (IBEX) were used to determine the VLISM temperature and velocity relative to the Sun, without accounting for elastic collisions with other species outside the heliopause. Here, we evaluate the effect of these collisions on the primary ISN helium population. We follow trajectories of helium atoms and track their collisions with slowed plasma and interstellar hydrogen atoms ahead of the heliopause. Atoms typically collide a few times in the outer heliosheath, and only ~1.5% of the atoms are not scattered at all. We use calculated differential cross sections to randomly choose scattering angles in these collisions. We estimate that the resulting primary ISN helium atoms at the heliopause are slowed down by ~0.45 km s-1 and heated by ~1100 K compared to the pristine VLISM. The resulting velocity distribution is asymmetric and shows an extended tail in the antisunward direction. Accounting for this change in the parameters derived from IBEX observations gives the Sun's relative speed of 25.85 km s-1 and temperature of 6400 K in the pristine VLISM. Finally, this paper serves as a source of the differential cross sections for elastic collisions with helium atoms.

5.
Geophys Res Lett ; 47(16): e2020GL088188, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-33132458

RESUMO

The Interstellar Boundary Explorer (IBEX) mission provides global energetic neutral atom (ENA) observations from the heliosphere and the Earth's magnetosphere, including spatial, temporal, and energy information. IBEX views the magnetosphere from the sides and almost always perpendicular to noon-midnight plane. We report the first ENA images of the energization process in the Earth's ion foreshock and magnetosheath regions. We show ENA flux and spectral images of the dayside magnetosphere with significant energization of ENA plasma sources (above ~2.7 keV) in the region magnetically connected to the Earth's bow shock (BS) in its quasi-parallel configuration of the interplanetary magnetic field (IMF). We also show that the ion energization increases gradually with decreasing IMF-BS angle, suggesting more efficient suprathermal ion acceleration deeper in the quasi-parallel foreshock.

6.
Astrophys J ; 888(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32020922

RESUMO

The effects of turbulence in the very local interstellar medium (VLISM) have been proposed by Giacalone & Jokipii (2015) to be important in determining the structure of the Interstellar Boundary Explorer (IBEX) ribbon via particle trapping by magnetic mirroring. We further explore this effect by simulating the motion of charged particles in a turbulent magnetic field superposed on a large-scale mean field, which we consider to be either spatially-uniform or a draped field derived from a 3D MHD simulation. We find that the ribbon is not double-peaked, in contrast to Giacalone & Jokipii (2015). However, the magnetic mirror force still plays an important role in trapping particles. Furthermore, the ribbon's thickness is considerably larger if the large-scale mean field is draped around the heliosphere. Voyager 1 observations in the VLISM show a turbulent field component that is stronger than previously thought, which we test in our simulation. We find that the inclusion of turbulent fluctuations at scales ≳100 au and power consistent with Voyager 1 observations produces a ribbon whose large-scale structure is inconsistent with IBEX observations. However, restricting fluctuations to <100 au produces a smoother ribbon structure similar to IBEX observations. Different turbulence realizations produce different small-scale features (≲10°) in the ribbon, but its large-scale structure is robust if the maximum fluctuation size is ≲50 au. This suggests that the magnetic field structure at scales ≲50 au is determined by the heliosphere-VLISM interaction and cannot entirely be represented by pristine interstellar turbulence.

7.
Astrophys J ; 879(2)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31395988

RESUMO

In 2009, the Interstellar Boundary Explorer (IBEX) discovered the existence of a narrow "ribbon" of intense energetic neutral atom (ENA) emission projecting approximately a circle in the sky. It is believed that the ribbon originates from outside of the heliopause in radial directions ( r ) perpendicular to the local interstellar magnetic field (ISMF), B , i.e., B∙ r = 0. Swaczyna et al. (2016a) estimated the distance to the IBEX ribbon via the parallax method comparing the ribbon position observed from the opposite sides of the Sun. They found a parallax angle of 0.41° ± 0.15°, yielding a distance of 140 - 38 + 84 au to a portion of the ribbon at high ecliptic latitudes. In this study, we demonstrate how the apparent shift of the ribbon in the sky, and thus the apparent distance to the ribbon's source found via the parallax, depends on the transport effects of energetic ions outside the heliopause. We find that the apparent shift of the ribbon based on the "spatial retention" model with ion enhancement near B∙ r = 0, as proposed by Schwadron & McComas (2013), agrees with the parallax of the source region. Parallax is also accurate for a homogeneously-distributed emission source. However, if there is weak pitch angle scattering and ions propagate freely along the ISMF, the apparent shift is significantly smaller than the expected parallax because of the highly anisotropic source. In light of the results from Swaczyna et al. (2016a), our results indicate that the IBEX ribbon source is spatially confined.

8.
Astrophys J ; 876(2)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31359881

RESUMO

The leading hypothesis for the origin of the Interstellar Boundary Explorer (IBEX) "ribbon" of enhanced energetic neutral atoms (ENAs) from the outer heliosphere is the secondary ENA mechanism, whereby neutralized solar wind ions escape the heliosphere and, after several charge-exchange processes, may propagate back toward Earth primarily in directions perpendicular to the local interstellar magnetic field (ISMF). However, the physical processes governing the parent protons outside of the heliopause are still unconstrained. In this study, we compute the "spatial retention" model proposed by Schwadron & McComas (2013) in a 3D simulated heliosphere. In their model, pickup ions outside the heliopause that originate from the neutral solar wind are spatially-retained in a region of space via strong pitch angle scattering before becoming ENAs. We find that the ribbon's intensity and shape can vary greatly depending on the pitch angle scattering rate both inside and outside the spatial retention region, potentially contributing to the globally distributed flux. The draping of the ISMF around the heliopause creates an asymmetry in the average distance to the ribbon's source as well as an asymmetry in the ribbon's shape, i.e., radial cross section of ENA flux through the circular ribbon. The spatial retention model adds an additional asymmetry to the ribbon's shape due to the enhancement of ions in the retention region close to the heliopause. Finally, we demonstrate how the ribbon's structure observed at 1 au is affected by different instrument capabilities, and how the Interstellar Mapping and Acceleration Probe (IMAP) may observe the ribbon.

9.
Phys Rev Lett ; 121(7): 075102, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169088

RESUMO

Nonthermal pickup ions (PUIs) are created in the solar wind (SW) by charge-exchange between SW ions (SWIs) and slow interstellar neutral atoms. It has long been theorized, but not directly observed that PUIs should be preferentially heated at quasiperpendicular shocks compared to thermal SWIs. We present in situ observations of interstellar hydrogen (H^{+}) PUIs at an interplanetary shock by the New Horizons' Solar Wind Around Pluto (SWAP) instrument at ∼34 au from the Sun. At this shock, H^{+} PUIs are only a few percent of the total proton density but contain most of the internal particle pressure. A gradual reduction in SW flow speed and simultaneous heating of H^{+} SWIs is observed ahead of the shock, suggesting an upstream energetic particle pressure gradient. H^{+} SWIs lose ∼85% of their energy flux across the shock and H^{+} PUIs are preferentially heated. Moreover, a PUI tail is observed downstream of the shock, such that the energy flux of all H^{+} PUIs is approximately six times that of H^{+} SWIs. We find that H^{+} PUIs, including their suprathermal tail, contain almost half of the total downstream energy flux in the shock frame.

10.
Astrophys J ; 855(No 1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29861499

RESUMO

We present a new model of the Interstellar Boundary Explorer (IBEX) ribbon based on the secondary energetic neutral atom (ENA) mechanism, under the assumption that there is negligible pitch angle scattering of pickup ions (PUIs) outside the heliopause. Using the results of an MHD-plasma/kinetic-neutral simulation of the heliosphere, we generate PUIs in the outer heliosheath, solve their transport using guiding center theory, and compute ribbon ENA fluxes at 1 AU. We implement several aspects of the PUI dynamics, including (1) parallel motion along the local interstellar magnetic field (ISMF), (2) advective transport with the interstellar plasma, (3) the mirror force acting on PUIs propagating along the ISMF, and (4) betatron acceleration of PUIs as they are advected within an increasing magnetic field towards the heliopause. We find that ENA fluxes at 1 AU are reduced when PUIs are allowed to move along the ISMF, and ENA fluxes are reduced even more by the inclusion of the mirror force, which pushes particles away from IBEX lines-of-sight. Inclusion of advection and betatron acceleration do not result in any significant change in the ribbon. Interestingly, the mirror force reduces the ENA fluxes from the inner edge of the ribbon more than its outer edge, effectively reducing the ribbon's width by ∼6° and increasing its radius projected on the sky. This is caused by the asymmetric draping of the ISMF around the heliopause, such that ENAs from the ribbon's inner edge originate closer to the heliopause, where the mirror force is strongest.

11.
Science ; 351(6279): aad9045, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26989259

RESUMO

The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...