Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1149, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326321

RESUMO

Optical pulses traveling through multimode optical fibers encounter the influence of both linear disturbances and nonlinearity, resulting in a complex and chaotic redistribution of power among different modes. In our research, we explore the phenomenon where multimode fibers reach stable states marked by the concentration of energy into both single and multiple sub-systems. We introduce a weighted Bose-Einstein law, demonstrating its suitability in describing thermalized modal power distributions in the nonlinear regime, as well as steady-state distributions in the linear regime. We apply the law to experimental results and numerical simulations. Our findings reveal that, at power levels situated between the linear and soliton regimes, energy concentration occurs locally within higher-order modal groups before transitioning to global concentration in the fundamental mode within the soliton regime. This research broadens the application of thermodynamic principles to multimode fibers, uncovering previously unexplored optical states that exhibit characteristics akin to optical glass.

2.
Opt Lett ; 47(24): 6353-6356, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538436

RESUMO

We analyze the stability and dynamics of dissipative Kerr solitons (DKSs) in the presence of a parabolic potential. This potential stabilizes oscillatory and chaotic regimes, favoring the generation of static DKSs. Furthermore, the potential induces the emergence of new dissipative structures, such as asymmetric breathers and chimera-like states. Based on a mode decomposition of these states, we unveil the underlying modal interactions.

3.
Opt Express ; 30(12): 21710-21724, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224884

RESUMO

In this work, we unveil the unique complex dynamics of multimode soliton interactions in graded-index optical fibers through simulations and experiments. By generating two multimode solitons from the fission of an input femtosecond pulse, we examine the evolution of their Raman-induced red-shift when the input pulse energy grows larger. Remarkably, we find that the output red-shift of the trailing multimode soliton may be reduced, so that it accelerates until it collides with the leading multimode soliton. As a result of the inelastic collision, a significant energy transfer occurs between the two multimode solitons: the trailing soliton captures energy from the leading soliton, which ultimately enhances its red-shift, thus increasing temporal separation between the two multimode solitons.

4.
Opt Express ; 30(4): 6300-6310, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209570

RESUMO

We experimentally generate multimode solitons in step-index fibers, where nonlinearity compensates for both chromatic and modal dispersion. These solitons are subject to Raman self-frequency shift, and their energy is gradually transfered to the fundamental fiber mode. We compare multimode soliton dynamics in both step-index and graded index fibers, in excellent agreement with numerical predictions.

5.
Sci Rep ; 11(1): 18240, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521869

RESUMO

Beam self-cleaning (BSC) in graded-index (GRIN) multimode fibers (MMFs) has been recently reported by different research groups. Driven by the interplay between Kerr effect and beam self-imaging, BSC counteracts random mode coupling, and forces laser beams to recover a quasi-single mode profile at the output of GRIN fibers. Here we show that the associated self-induced spatiotemporal reshaping allows for improving the performances of nonlinear fluorescence (NF) microscopy and endoscopy using multimode optical fibers. We experimentally demonstrate that the beam brightness increase, induced by self-cleaning, enables two and three-photon imaging of biological samples with high spatial resolution. Temporal pulse shortening accompanying spatial beam clean-up enhances the output peak power, hence the efficiency of nonlinear imaging. We also show that spatiotemporal supercontinuum (SC) generation is well-suited for large-band NF imaging in visible and infrared domains. We substantiated our findings by multiphoton fluorescence imaging in both microscopy and endoscopy configurations.

6.
Opt Express ; 28(16): 24005-24021, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752387

RESUMO

Beam self-imaging in nonlinear graded-index multimode optical fibers is of interest for many applications, such as implementing a fast saturable absorber mechanism in fiber lasers via multimode interference. We obtain a new exact solution for the nonlinear evolution of first and second order moments of a laser beam of arbitrary transverse shape carried by a graded-index multimode fiber. We have experimentally directly visualized the longitudinal evolution of beam self-imaging by means of femtosecond laser pulse propagation in both the anomalous and the normal dispersion regime of a standard telecom graded-index multimode optical fiber. Light scattering out of the fiber core via visible photo-luminescence emission permits us to directly measure the self-imaging period and the beam dynamics. Spatial shift and splitting of the self-imaging process under the action of self-focusing are also revealed.

7.
Opt Express ; 28(14): 20473-20488, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680106

RESUMO

The process of high-energy soliton fission is experimentally and numerically investigated in a graded-index multimode fiber. Fission dynamics is analyzed by comparing experimental observations and simulations. A novel nonlinear propagation regime is observed, where solitons produced by the fission have a nearly constant Raman wavelength shift and same pulse width over a wide range of soliton energies.

8.
Opt Express ; 13(4): 1215-20, 2005 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-19494991

RESUMO

Two optical transmitters are described, generating new modulation formats based on the simultaneous modulation of the amplitude and the phase of an optical signal. The proposed formats are compared to the traditional Non-Return-to-Zero (NRZ), showing improved tolerances to chromatic dispersion (CD), differential group delay (DGD) and to wavelength division multiplexing (WDM) channel spacing, and requiring electronics with halved bandwidth.

9.
Appl Opt ; 43(1): 149-52, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14714656

RESUMO

We investigate the effect of cross-phase modulation in wavelength-division-multiplexed polarization-modulation lightwave systems. Analytical expression for the Q factor penalty in terms of signal power, the number of channels, and other parameters are derived. The theory is compared with numerical experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...