Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(10): e1010153, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36279309

RESUMO

Early lung cancer lesions develop within a unique microenvironment that undergoes constant cyclic stretch from respiration. While tumor stiffening is an established driver of tumor progression, the contribution of stress and strain to lung cancer is unknown. We developed tissue scale finite element models of lung tissue to test how early lesions alter respiration-induced strain. We found that an early tumor, represented as alveolar filling, amplified the strain experienced in the adjacent alveolar walls. Tumor stiffening further increased the amplitude of the strain in the adjacent alveolar walls and extended the strain amplification deeper into the normal lung. In contrast, the strain experienced in the tumor proper was less than the applied strain, although regions of amplification appeared at the tumor edge. Measurements of the alveolar wall thickness in clinical and mouse model samples of lung adenocarcinoma (LUAD) showed wall thickening adjacent to the tumors, consistent with cellular response to strain. Modeling alveolar wall thickening by encircling the tumor with thickened walls moved the strain amplification radially outward, to the next adjacent alveolus. Simulating iterative thickening in response to amplified strain produced tracks of thickened walls. We observed such tracks in early-stage clinical samples. The tracks were populated with invading tumor cells, suggesting that strain amplification in very early lung lesions could guide pro-invasive remodeling of the tumor microenvironment. The simulation results and tumor measurements suggest that cells at the edge of a lung tumor and in surrounding alveolar walls experience increased strain during respiration that could promote tumor progression.


Assuntos
Neoplasias Pulmonares , Alvéolos Pulmonares , Camundongos , Animais , Análise de Elementos Finitos , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiologia , Pulmão , Neoplasias Pulmonares/patologia , Carcinogênese , Microambiente Tumoral
2.
Oncogene ; 41(2): 293-300, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34689179

RESUMO

The RAS→RAF→MEK→ERK pathway is hyperactivated in the majority of human lung adenocarcinoma (LUAD). However, the initial activating mutations induce homeostatic feedback mechanisms that limit ERK activity. How ERK activation reaches the tumor-promoting levels that overcome the feedback and drive malignant progression is unclear. We show here that the lung lineage transcription factor NKX2-1 suppresses ERK activity. In human tissue samples and cell lines, xenografts, and genetic mouse models, NKX2-1 induces the ERK phosphatase DUSP6, which inactivates ERK. In tumor cells from late-stage LUAD with silenced NKX2-1, re-introduction of NKX2-1 induces DUSP6 and inhibits tumor growth and metastasis. We show that DUSP6 is necessary for NKX2-1-mediated inhibition of tumor progression in vivo and that DUSP6 expression is sufficient to inhibit RAS-driven LUAD. Our results indicate that NKX2-1 silencing, and thereby DUSP6 downregulation, is a mechanism by which early LUAD can unleash ERK hyperactivation for tumor progression.


Assuntos
Fosfatase 6 de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases/genética , Fator Nuclear 1 de Tireoide/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...