Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int Microbiol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38777925

RESUMO

INTRODUCTION: The emergence of multidrug-resistant bacteria and biofilms requires discovering new antimicrobial agents from unexplored environments. OBJECTIVES: This study aims to isolate and characterize a new actinobacterial strain from the Hoggar Mountains in southern Algeria and evaluate its ability to produce bioactive molecules with potential antibacterial and antibiofilm activities. METHODS: A novel halotolerant actinobacterial strain, designated HG-17, was isolated from the Hoggar Mountains, and identified based on phenotypic characterizations, 16S rDNA sequence analysis, and phylogenetic analysis. The antibacterial and antibiofilm activities of the strain were assessed, and the presence of biosynthetic genes (PKS-I and NRPS) was confirmed. Two active compounds, HG-7 and HG-9, were extracted butanol solvent, purified by HPLC, and their chemical structures were elucidated using ESI mass spectrometry and NMR spectroscopy. RESULTS: The strain HG-17 was identified as Streptomyces purpureus NBRC with 98.8% similarity. It exhibited strong activity against multidrug-resistant and biofilm-forming bacteria. The two purified active compounds, HG-7 and HG-9, were identified as cyclo-(d-cis-hydroxyproline-l-phenylalanine) and cyclo-(l-prolone-l-tyrosine), respectively. The minimum inhibitory concentrations (MICs) of HG-7 and HG-9 ranged from 3 to 15 µg/mL, comparable to the MICs of tetracycline (8 to 15 µg/mL). Their minimum biofilm inhibitory concentration (MBIC 50%) showed good inhibition from 48.0 to 52.0% at concentrations of 1 to 7 µg/mL against the tested bacteria. CONCLUSION: This is the first report of cyclo-(d-cis-hydroxyproline-l-phenylalanine) and cyclo-(l-prolone-l-tyrosine) antibiotics from S. purpureus and their anti-multi-drug-resistant and biofilm-forming bacteria. These results indicate that both antibiotics could be used as effective therapeutics to control infections associated with multidrug-resistant bacteria.

2.
Biomed Res Int ; 2023: 1061176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284028

RESUMO

The Sahara Desert, one of the most extreme ecosystems in the planet, constitutes an unexplored source of microorganisms such as mycelial bacteria. In this study, we investigated the diversity of halophilic actinobacteria in soils collected from five regions of the Algerian Sahara. A total of 23 halophilic actinobacterial strains were isolated by using a humic-vitamin agar medium supplemented with 10% NaCl. The isolated halophilic strains were subjected to taxonomic analysis using a polyphasic approach, which included morphological, chemotaxonomic, physiological (numerical taxonomy), and phylogenetic analyses. The isolates showed abundant growth in CMA (complex medium agar) and TSA (tryptic soy agar) media containing 10% NaCl, and chemotaxonomic characteristics were consistent with their assignment to the genus Nocardiopsis. Analysis of the 16S rRNA sequence of 23 isolates showed five distinct clusters and a similarity level ranging between 98.4% and 99.8% within the Nocardiopsis species. Comparison of their physiological characteristics with the nearest species showed significant differences with the closely related species. Halophilic Nocardiopsis isolated from Algerian Sahara soil represents a distinct phyletic line suggesting a potential new species. Furthermore, the isolated strains of halophilic Nocardiopsis were screened for their antagonistic properties against a broad spectrum of microorganisms by the conventional agar method (agar cylinders method) and found to have the capacity to produce bioactive secondary metabolites. Except one isolate (AH37), all isolated Nocardiopsis showed moderate to high biological activities against Pseudomonas syringae and Salmonella enterica, and some isolates showed activities against Agrobacterium tumefaciens, Serratia marcescens, and Klebsiella pneumoniae. However, no isolates were active against Bacillus subtilis, Aspergillus flavus, or Aspergillus niger. The obtained finding implies that the unexplored extreme environments such as the Sahara contain many new bacterial species as a novel drug source for medical and industrial applications.


Assuntos
Nocardiopsis , Cloreto de Sódio , Nocardiopsis/metabolismo , Cloreto de Sódio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Solo , Ágar , Ecossistema , África do Norte , Bactérias/genética , Indústria Farmacêutica , DNA Bacteriano/genética , Análise de Sequência de DNA , Microbiologia do Solo
3.
PeerJ ; 11: e14754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778156

RESUMO

Fusarium cotton wilt is a devastating disease of the cotton crop throughout the world, caused by Fusarium oxysporum f.sp. vasinfectum (FOV). Chemical control has many side effects, so, biological controls have been widely used for the management of Fusarium wilt. This study aimed to investigate the possible use of an actinomycetes Saccharothrix algeriensis (SA) NRRL B-24137 to control FOV. To access in-vitro anti-Fusarium ability of SA NRRL B-24137, dual culture assay, spore germination and seed germination tests were carried out. Following in-vitro investigations, several pot tests in a greenhouse environment were used to evaluate the biological control potential of SA NRRL B-24137 against FOV. Dual culture assay and spore germination revealed that SA NRRL B-24137 showed significant anti-Fusarium activity.During spore germination 87.77% inhibition of spore germination were observed. In pot experiments, SA NRRL B-24137 primed cotton seeds resulted in a 74.0% reduction in disease incidence. In soil there was a significant reduction in FOV spores in the presence of SA NRRL B-24137. Positive correlation was also observed on different concentrations of SA NRRL B-24137 towards FOV reduction. The results of this study showed that SA NRRL B-24137 has the potential to be employed as a biocontrol agent against Fusarium cotton wilt, improving cotton growth characteristics and yield.


Assuntos
Fusarium , Óleo de Sementes de Algodão/farmacologia
4.
Arch Microbiol ; 204(10): 629, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115881

RESUMO

This work aims at exploring an antagonistic actinobacterial strain isolated from the roots of Ziziphus lotus in bioformulation processes and the biocontrol of Rhizoctonia solani damping-off of tomato seedlings. The strain Streptomyces caeruleatus ZL-2 was investigated for the principal in vitro biocontrol mechanisms and then formulated in three different biofungicides: wettable talcum powder (WTP), sodium alginate propagules (SAP) and clay sodium alginate propagules (CAP). Compared to a marketed control products (Serenade® and Acil 060FS®), the formulated biofungicides were investigated against the R. solani damping-off of tomato cv. Aïcha seedlings. The strain ZL-2 produced chitinases, cellulases, ß-1,3-glucanases, cyanhydric acid and siderophores. It also showed strong antagonistic effect on the mycelial growth of R. solani. Bioautographic and HPLC analysis revealed the production of a single or several co-migrating antifungal compounds. The biofungicide WTP presented an attractive biocontrol effect by significantly reducing the disease severity index (DSI) compared to untreated seeds. No significant differences were obtained compared to the chemical treatment with Acil 060FS®. The viability of spores and biocontrol efficacy of the WTP were confirmed after 1-year storage. Strain ZL-2 has never been reported in the bioformulation of active biofungicides against Rhizoctonia solani damping-off and this work opens up very attractive prospects in the fields of biocontrol and crop improvement.


Assuntos
Celulases , Quitinases , Solanum lycopersicum , Alginatos , Antifúngicos/farmacologia , Argila , Solanum lycopersicum/microbiologia , Nitrazepam , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Rhizoctonia , Plântula/microbiologia , Sideróforos , Esporos Fúngicos , Streptomyces , Talco
5.
Curr Microbiol ; 79(10): 298, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002540

RESUMO

Multi-resistant bacterial pathogens are a major public health problem for treating nosocomial infections owing to their high resistance to antibiotics. The objective of this research was to characterize the bioactive molecules secreted by a novel moderately halophilic actinobacterium strain, designated GSB-11, exhibiting a strong antagonistic activity against several multidrug-resistant pathogenic bacteria. This potential strain was identified by phenotypic, genotypic (16S rRNA), and phylogenetic analyses. GSB-11 was related to "Streptomyces acrimycini" NBRC 12736 T with 99.59% similarity. Molecular screening by PCR assay demonstrated that the strain possesses two biosynthetic genes coding for NRPS and PKS-II. Two active compounds GSB11-6 and GSB11-7 were extracted from the cell-free culture supernatant of Bennett medium and purified using reversed-phase HPLC. According to spectrometric (mass spectrum) and spectroscopic (1H NMR, 13C NMR, 1H-1H COSY, and 1H-13C HMBC) spectra analyses, the compounds GSB11-6 and GSB11-7 were identified to be maculosin and N-acetyltyramine, respectively. Their minimum inhibitory concentrations (MIC) revealed interesting values against certain multidrug-resistant pathogenic bacteria. They were between 5 and 15 mg/mL for GSB11-6, 10 and 30 mg/mL for GSB11-7. To our best knowledge, this is the first study of these active substances isolated from "Streptomyces acrimycini" showing an interesting antibacterial activity. Therefore, these essential compounds could be candidates for future research against multidrug-resistant bacteria.


Assuntos
Microbiologia do Solo , Streptomyces , Antibacterianos/química , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos , Filogenia , Piperazinas , RNA Ribossômico 16S/genética , Tiramina/análogos & derivados
6.
Appl Microbiol Biotechnol ; 106(8): 3113-3137, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35435457

RESUMO

Endophytic strains belonging to the Bacillus cereus group were isolated from the halophytes Atriplex halimus L. (Amaranthaceae) and Tamarix aphylla L. (Tamaricaceae) from costal and continental regions in Algeria. Based on their salt tolerance (up to 5%), the strains were tested for their ability to alleviate salt stress in tomato and wheat. Bacillus sp. strain BH32 showed the highest potential to reduce salinity stress (up to + 50% and + 58% of dry weight improvement, in tomato and wheat, respectively, compared to the control). To determine putative mechanisms involved in salt tolerance and plant growth promotion, the whole genome of Bacillus sp. BH32 was sequenced, annotated, and used for comparative genomics against the genomes of closely related strains. The pangenome of Bacillus sp. BH32 and its closest relative was further analyzed. The phylogenomic analyses confirmed its taxonomic position, a member of the Bacillus cereus group, with intergenomic distances (GBDP analysis) pinpointing to a new taxon (digital DNA-DNA hybridization, dDDH < 70%). Genome mining unveiled several genes involved in stress tolerance, production of anti-oxidants and genes involved in plant growth promotion as well as in the production of secondary metabolites. KEY POINTS : • Bacillus sp. BH32 and other bacterial endophytes were isolated from halophytes, to be tested on tomato and wheat and to limit salt stress adverse effects. • The strain with the highest potential was then studied at the genomic level to highlight numerous genes linked to plant growth promotion and stress tolerance. • Pangenome approaches suggest that the strain belongs to a new taxon within the Bacillus cereus group.


Assuntos
Bacillus , Solanum lycopersicum , Bacillus/genética , DNA , Endófitos/genética , Solanum lycopersicum/microbiologia , Estresse Salino , Plantas Tolerantes a Sal , Triticum/microbiologia
7.
World J Microbiol Biotechnol ; 38(1): 16, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34897563

RESUMO

The use of halotolerant beneficial plant-growth-promoting (PGP) bacteria is considered as a promising eco-friendly approach to improve the salt tolerance of cash crops. One strategy to enhance the possibility of obtaining stress-alleviating bacteria is to screen salt impacted soils. In this study, amongst the 40 endophytic bacteria isolated from the roots of Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L., 8 showed interesting NaCl tolerance in vitro. Their evaluation, through different tomato plant trials, permitted the isolate IS26 to be distinguished as the most effective seed inoculum for both plant growth promotion and mitigation of salt stress. On the basis of 16S rRNA gene sequence, the isolate was closely related to Stenotrophomonas rhizophila. It was then screened in vitro for multiple PGP traits and the strain-complete genome was sequenced and analysed to further decipher the genomic basis of the putative mechanisms underlying its osmoprotective and plant growth abilities. A remarkable number of genes putatively involved in mechanisms responsible for rhizosphere colonization, plant association, strong competition for nutrients, and the production of important plant growth regulator compounds, such as AIA and spermidine, were highlighted, as were substances protecting against stress, including different osmolytes like trehalose, glucosylglycerol, proline, and glycine betaine. By having genes related to complementary mechanisms of osmosensing, osmoregulation and osmoprotection, the strain confirmed its great capacity to adapt to highly saline environments. Moreover, the presence of various genes potentially related to multiple enzymatic antioxidant processes, able to reduce salt-induced overproduction of ROS, was also detected.


Assuntos
Endófitos/fisiologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Poaceae/microbiologia , Tolerância ao Sal , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , África do Norte , Aminoácidos Cíclicos/metabolismo , Endófitos/classificação , Interações entre Hospedeiro e Microrganismos , RNA Ribossômico 16S , Espécies Reativas de Oxigênio/metabolismo , Rizosfera , Salinidade , Estresse Salino , Plantas Tolerantes a Sal/microbiologia , Análise de Sequência de DNA , Microbiologia do Solo
8.
Microorganisms ; 9(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201731

RESUMO

Algeria is the largest country in Africa characterized by semi-arid and arid sites, located in the North, and hypersaline zones in the center and South of the country. Several autochthonous plants are well known as medicinal plants, having in common tolerance to aridity, drought and salinity. In their natural environment, they live with a great amount of microbial species that altogether are indicated as plant microbiota, while the plants are now viewed as a "holobiont". In this work, the microbiota of the soil associated to the roots of fourteen economically relevant autochthonous plants from Algeria have been characterized by an innovative metagenomic approach with a dual purpose: (i) to deepen the knowledge of the arid and semi-arid environment and (ii) to characterize the composition of bacterial communities associated with indigenous plants with a strong economic/commercial interest, in order to make possible the improvement of their cultivation. The results presented in this work highlighted specific signatures which are mainly determined by climatic zone and soil properties more than by the plant species.

9.
Plant Dis ; 105(11): 3657-3668, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34096766

RESUMO

A field survey conducted on asymptomatic grapevine propagation material from nurseries and symptomatic young grapevines throughout different regions of Algeria yielded a collection of 70 Phaeoacremonium-like isolates and three Cadophora-like isolates. Based on morphology and DNA sequence data of ß-tubulin (tub2) and actin, five Phaeoacremonium species were identified including Phaeoacremonium minimum (22 isolates), Phaeoacremonium venezuelense (19 isolates), Phaeoacremonium parasiticum (17 isolates), Phaeoacremonium australiense (8 isolates), and Phaeoacremonium iranianum (4 isolates). The latter two species (P. australiense and P. iranianum) were reported for the first time in Algeria. Multilocus phylogenetic analyses (internal transcribed spacer, tub2, and translation elongation factor 1-α) and morphological features, allowed the description of the three isolates belonging to the genus Cadophora (WAMC34, WAMC117, and WAMC118) as a novel species, named Cadophora sabaouae sp. nov. Pathogenicity tests were conducted on grapevine cuttings cultivar Cardinal. All the identified species were pathogenic on grapevine cuttings.


Assuntos
Vitis , Argélia , Sequência de Bases , Filogenia , Doenças das Plantas
10.
J Dairy Sci ; 104(3): 2684-2692, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33455787

RESUMO

This study was designed to determine antimicrobial resistance phenotypes and genotypes and virulence factors in Staphylococcus aureus and coagulase-negative staphylococci (CNS) in unpasteurized milk sold in Djelfa, Algeria. Eighty-two unpasteurized cow milk samples were randomly obtained from 82 retail stores in Djelfa and tested to detect staphylococci. Species were identified by biochemical tests and MALDI-TOF. Antimicrobial resistance phenotypes and genotypes were determined by disk diffusion test, PCR, and sequencing. The Staph. aureus isolates were subjected to spa typing, multilocus sequence typing, and detection of virulence genes and the scn gene by PCR and sequencing. Forty-five (54.9%) milk samples were contaminated by staphylococci and 45 isolates were recovered: 10 Staph. aureus (12.2% of total samples) and 35 CNS (42.7%). Resistance to penicillin (blaZ), tetracycline (tetL/tetK), and erythromycin (ermB/msrA/ermC) were the most common phenotypes (genotypes). Three CNS were methicillin-resistant and all were mecA-positive. The Staph. aureus isolates were ascribed to the following lineages [spa type/sequence type/associated clonal complex (number of isolates)]: t267/ST479/CC479 (n = 6), t1510/ST5651/CC45 (n = 1), t359/ST97/CC97/ (n = 1), t346/ST15/CC15 (n = 1), and t044/ST80 (n = 1). The mecA gene was detected in the cefoxitin-susceptible t044/ST80 isolate and co-harbored the lukF/lukS-PV and scn genes. The detection of mecA-PVL-positive Staph. aureus, methicillin-resistant CNS, and multidrug-resistant staphylococcal species indicates a potentially serious health issue and reveals that unpasteurized milk sold in Djelfa city could be a potential vehicle for pathogenic and antimicrobial-resistant staphylococci.


Assuntos
Doenças dos Bovinos , Staphylococcus aureus Resistente à Meticilina , Leite/microbiologia , Infecções Estafilocócicas , Argélia , Animais , Antibacterianos/farmacologia , Bovinos , Cefoxitina , Coagulase/genética , Feminino , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/genética
11.
Microb Drug Resist ; 27(2): 268-276, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32609048

RESUMO

This study aimed to determine the prevalence and diversity of extended-spectrum ß-lactamase (ESBL)-producing and multidrug-resistant (MDR) Escherichia coli and Klebsiella pneumoniae isolates from 136 broiler livers randomly purchased in 136 retail markets in Djelfa (Algeria). Isolation was performed on Hektoen agar and bacterial identification was carried out by API20E system and Maldi-TOF-MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry). Antimicrobial susceptibility was tested by the disk diffusion and agar dilution methods. Detection of ESBLs and other resistance and integron genes, phylogenetic grouping, and molecular typing was performed by PCR and sequencing. Seventy-eight isolates (one per positive sample) were recovered: 73 E. coli and 5 K. pneumoniae. Among E. coli, 86.3% of isolates were MDR. ESBL activity was revealed in eight E. coli and five K. pneumoniae isolates (rates of 5.9% and 3.7% in analyzed samples, respectively). ESBL genes detected among E. coli were as follows (number of isolates): blaCTX-M-15 (3), blaCTX-M-1 (3), blaCTX-M-55 (1), and blaSHV-12 (1); all ESBL-producing K. pneumoniae isolates carried the blaCTX-M-15 gene. ESBL-producing E. coli isolates were assigned to lineages (phylogroup/sequence type and number of isolates in parenthesis): A/ST48 (1), B1/ST6448 (1), B1/ST5087 (3), B1/ST23 (1), and B2/ST131 (two blaCTX-M-15 E. coli isolates). K. pneumoniae isolates were ascribed to sequence types ST2010 and ST3483. Regarding the 65 non-ESBL E. coli isolates, the most observed resistance genes were as follows: tet(A) (75%), blaTEM (57.1%), and sul2 (43.5%). Class1 integrons were revealed in seven non-ESBL E. coli isolates (10.7%) and two gene-cassette arrays were identified: dfrA1 and aadA1+dfrA1. Our study provides evidence that broiler-derived food from Center of Algeria constitutes a source of ESBL and/or MDR-producing Enterobacteriaceae, with detection of relevant ESBL genes and epidemic clones.


Assuntos
Galinhas/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Klebsiella pneumoniae/isolamento & purificação , Fígado/microbiologia , beta-Lactamases/genética , Argélia , Animais , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Fezes/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética
12.
Arch Microbiol ; 202(9): 2509-2516, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32642829

RESUMO

Saccharothrix algeriensis NRRL B-24137 is an actinobacterium isolated from Algerian Saharan soil. This strain has the ability to produce several dithiolopyrrolone antibiotic derivatives depending on the precursors added to the culture medium. This group of antibiotics is known for their potent antimicrobial and anticancer activities. Holomycin is a member of the dithiolopyrrolone group of antibiotics, and has already been isolated from several species of actinobacteria belonging to the genus Streptomyces and also from some Gram-negative bacteria. In this study, holomycin was produced for the first time in the culture broth of a non-Streptomyces actinobacteria. This antibiotic was induced by adding 5 mM of L-cystine as precursor to the semi-synthetic fermentation broth of Sa. algeriensis NRRL B-24137 and then fully identified after HPLC purification. The minimum inhibitory concentrations (MIC) of holomycin were determined against several pathogenic microorganisms, including Escherichia coli ATCC 10536 Klebsiella pneumoniae CIP 82.91, Listeria monocytogenes CIP 82110, Staphylococcus aureus CIP 7625, Aspergillus carbonarius M333, Fusarium culmorum FC1, Candida albicans IPA 200. This antibiotic showed a broad-spectrum antimicrobial activity, inhibiting a variety of Gram-positive and Gram-negative bacteria, and micro-fungi.


Assuntos
Actinobacteria/metabolismo , Cistina/metabolismo , Lactamas/metabolismo , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Meios de Cultura/química , Fermentação , Fungos/efeitos dos fármacos , Lactamas/farmacologia , Testes de Sensibilidade Microbiana
13.
Curr Microbiol ; 77(10): 2831-2840, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32594221

RESUMO

Grapevine trunk diseases (GTDs) are among the most destructive diseases of vineyards worldwide, including Algeria. In the fungal complex involved in GTD symptoms, referred as grapevine trunk-pathogens, Paeomoniella chlamydospora and Phaeoacremonium minimum have a determining infecting role as pioneer fungi. Due to the lack of efficiency of conventional disease management practices, a search for alternative strategies, such as biocontrol, is needed. Taking the approach of looking for biocontrol candidates in the environment surrounding the plant, the present study explored actinobacteria diversity within vineyard soils of six grape-producing regions in Algeria. Based on their 16S rRNA gene sequence, identification and phylogenic analysis were performed on the 40 isolates of actinobacteria obtained. Forty percent of strains were attached to Streptomyces, including two evidenced new species, and 32.5% were affiliated to Saccharothrix. The other less represented genera were Actinoplanes, Nocardia, Nocardiopsis, Lentzea, Nonomuraea, Promicromonospora, Saccharopolyspora and Streptosporangium. Screening based on antagonistic and plant growth promotion (PGP) abilities of the strains showed that 47.5% of the isolates exhibited appreciable antagonistic activities against both Pa. chlamydospora and Pm. minimum, with the two best strains being Streptomyces sp. Ms18 and Streptomyces sp. Sb11. Screening for plant growth promoting properties demonstrated that majority of the strains were able to produce indole acetic acid, siderophores, ammonia, ACC deaminase, cellulase and amylase, and fix N2. Through a PGP-traits-based cluster analysis, the most interesting strains were highlighted. Taking into account both antagonistic and PGP properties, Streptomyces sp Sb11 was selected as the most promising candidate for further evaluations of its efficiency in a GTDs context.


Assuntos
Actinobacteria , Fungos , Interações Microbianas , Microbiologia do Solo , Vitis , Actinobacteria/classificação , Actinobacteria/genética , Argélia , Antifúngicos/farmacologia , Ascomicetos/fisiologia , Fazendas , Fungos/fisiologia , RNA Ribossômico 16S/genética , Vitis/crescimento & desenvolvimento , Vitis/microbiologia
14.
World J Microbiol Biotechnol ; 33(6): 105, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28466299

RESUMO

A novel actinobacterium strain, named AT37, showed a strong activity against some multidrug-resistant Staphylococcus aureus, including methicillin-resistant S. aureus MRSA ATCC 43300, other clinical isolates of MRSA and vancomycin resistant S. aureus VRSA S1. The strain AT37 was isolated from a Saharan soil by a dilution agar plating method using chitin-vitamin agar medium supplemented with rifampicin. The morphological and chemical studies indicated that this strain belonged to the genus Streptomyces. Its 16S rRNA gene sequence was determined and a database search indicated that it was closely associated with the type strain of Streptomyces novaecaesareae NBRC 13368T with 99.6% of similarity. However, the comparison of the morphological and the physiological characteristics of the strain with those of the nearest species showed significant differences. The strain AT37 secreted the antibiotic optimally during mid-stationary phase of growth. One active compound (AT37-1) was extracted from the culture broth with dichloromethane, separated on silica gel plates and purified by HPLC. Based on spectroscopic analysis of UV-Visible, infrared, and 1H and 13C NMR spectra and spectrometric analysis, the chemical structure of the compound AT37-1 was identified as 5-[(5E,7E,11E)-2,10-dihydroxy-9,11-dimethyl-5,7,11-tridecatrien-1-yl]-2-hydroxy-2-(1-hydroxyethyl)-4-methyl-3(2H)-furanone. Minimum inhibitory concentrations and minimum biofilm inhibitory concentration (MBIC50) of this compound showed significant activity against multidrug-resistant S. aureus with 15-30 and 10-15 µg/mL, respectively.


Assuntos
Furanos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Análise de Sequência de DNA/métodos , Streptomyces/classificação , África do Norte , Técnicas de Tipagem Bacteriana , Testes de Sensibilidade Microbiana , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo , Streptomyces/isolamento & purificação , Streptomyces/metabolismo , Resistência a Vancomicina/efeitos dos fármacos
15.
Antonie Van Leeuwenhoek ; 110(2): 245-252, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27803992

RESUMO

A filamentous actinobacterium, designated strain PM3T, was isolated from a Saharan soil sample collected from Béni-Abbès, Béchar (South-West Algeria). A polyphasic taxonomic study was carried out to establish the status of strain PM3T. The isolate was found to have morphological and chemotaxonomical properties associated with members of the genus Planomonospora. The new isolated microorganism developed cylindrical sporangia arranged in double parallel rows on aerial mycelium, each one containing a motile single sporangiospore. The cell wall of the strain was found to contain meso-diaminopimelic acid. Whole-cell hydrolysates were found to contain madurose, glucose, mannose and ribose. The predominant menaquinone was identified as MK-9(H2) (69.6%). The polar lipids detected were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, phosphatidylhydroxyethanolamine and glucosamine-containing lipids. The major fatty acids were found to be C17:1ω9c (38.6%) and C17:0 (24.2%). Results of 16S rRNA gene sequence comparison revealed that strain PM3T shared a high degree of 16S rRNA gene sequence similarity with Planomonospora sphaerica DSM 44632T (99.3%), Planomonospora parontospora subsp. parontospora DSM 43177T (99.2%) and P. parontospora subsp. antibiotica DSM 43869T (99.0%). DNA-DNA hybridization values between strain PM3T and the type strains of the closely related species were between 58.4 and 70.1%. The combination of phylogenetic analysis, DNA-DNA relatedness data, phenotypic characteristics and chemotaxonomic data support the conclusion that strain PM3T represents a novel species of the genus Planomonospora, for which the name Planomonospora algeriensis sp. nov. is proposed. The type strain is PM3T (=DSM 46752T = CECT 9047T).


Assuntos
Actinobacteria/classificação , Actinobacteria/genética , Microbiologia do Solo , Argélia , Filogenia , RNA Ribossômico 16S/genética
16.
Antonie Van Leeuwenhoek ; 110(3): 399-405, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27915411

RESUMO

The taxonomic position of a new Saccharothrix strain, designated MB46T, isolated from a Saharan soil sample collected in Mzab region (Ghardaïa province, South Algeria) was established following a polyphasic approach. The novel microorganism has morphological and chemical characteristics typical of the members of the genus Saccharothrix and formed a phyletic line at the periphery of the Saccharothrix espanaensis subcluster in the 16S rRNA gene dendrograms. Results of the 16S rRNA gene sequence comparisons revealed that strain MB46T shares high degrees of similarity with S. espanaensis DSM 44229T (99.2%), Saccharothrix variisporea DSM 43911T (98.7%) and Saccharothrix texasensis NRRL B-16134T (98.6%). However, the new strain exhibited only 12.5-17.5% DNA relatedness to the neighbouring Saccharothrix spp. On the basis of phenotypic characteristics, 16S rRNA gene sequence comparisons and DNA-DNA hybridizations, strain MB46T is concluded to represent a novel species of the genus Saccharothrix, for which the name Saccharothrix ghardaiensis sp. nov. (type strain MB46T = DSM 46886T = CECT 9046T) is proposed.


Assuntos
Actinomycetales/classificação , Actinomycetales/isolamento & purificação , Microbiologia do Solo , Actinomycetales/genética , Actinomycetales/fisiologia , África do Norte , Argélia , Parede Celular/química , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácido Diaminopimélico/análise , Ácidos Graxos/análise , Micromonosporaceae/genética , Fenótipo , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio/metabolismo , Solo/química , Especificidade da Espécie , Temperatura , Vitamina K 2/análogos & derivados , Vitamina K 2/análise
17.
Int J Syst Evol Microbiol ; 66(11): 4785-4790, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27535702

RESUMO

A novel actinobacterial strain, designated MB27T, was isolated from a Saharan soil sample collected in Mzab region (Ghardaïa province, South Algeria). Strain MB27T was characterized following a polyphasic taxonomic approach. This strain produced a branched and fragmented substrate mycelium, which was found to have a yellowish orange colour. A white scanty aerial mycelium was produced on most media tested. Chemotaxonomic and phylogenetic studies clearly demonstrated that strain MB27T belongs to the family Pseudonocardiaceae and is closely related to the genus Saccharothrix. Cell-wall hydrolysates contained meso-diaminopimelic acid but not glycine, and whole-cell hydrolysates contained galactose, glucose, ribose and small amounts of mannose and rhamnose. The detected phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides. Mycolic acids were not detected while the predominant fatty acid was iso-branched hexadecanoate (iso-C16 : 0). The major menaquinone was MK-9(H4). Results of 16S rRNA gene sequence comparisons revealed that strain MB27T shairs the highest degree of similarity with Saccharothrix ecbatanensis DSM 45486T (99.8%), Saccharothrix hoggarensis DSM 45457T (99.3 %), Saccharothrix longispora DSM 43749T (98.6 %) and Saccharothrix yanglingensis DSM 45665T (98.6 %). However, it exhibited only 11-42 % DNA-DNA relatedness to the neighbouring Saccharothrixspecies. On the basis of phenotypic characteristics, 16S rRNA gene sequence comparisons and DNA-DNA hybridization, strain MB27T is shown to represent a novel species of the genus Saccharothrix, for which the name Saccharothrix isguenensis sp. nov. (type strain MB27T=DSM 46885T=CECT 9045T) is proposed.


Assuntos
Actinomycetales/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Actinomycetales/genética , Actinomycetales/isolamento & purificação , África do Norte , Argélia , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Int J Syst Evol Microbiol ; 66(7): 2484-2490, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27073877

RESUMO

The taxonomic position of a novel actinobacterium, strain SG1T, isolated from a Saharan soil sample collected from Béni-Abbès, Béchar (south-west Algeria), was established by using a polyphasic approach. The micro-organism had morphological and chemical features that were consistent with its classification in the genus Streptosporangium. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The whole-cell sugars contained ribose and glucose, but not madurose. The predominant menaquinones were MK-9(H2) and MK-9(H4). The polar lipid profile contained diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylhydroxymethylethanolamine, phosphatidylhydroxyethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The predominant cellular fatty acids were C17 : 1ω8c, iso-C16 : 0, 10-methyl C17 : 0, C18 : 1ω9c and C17 : 0. 16S rRNA gene sequence similarity analysis supported the classification of the isolate in the genus Streptosporangium and indicated that it was related most closely to 'Streptosporangium subfuscum' DSM 46724 (99.7 % similarity), Streptosporangium pseudovulgare DSM 43181T (98.7 %), Streptosporangium fragile DSM 43847T (98.6 %) and Streptosporangium sandarakinum DSM 45763T (98.5 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SG1T formed a cluster with its closest relative 'S. subfuscum' DSM 46724. However, DNA-DNA relatedness as well as physiological and chemotaxonomical analyses showed that strain SG1T could be differentiated from its closest phylogenetic relatives. Therefore, it is proposed that strain SG1T should be classified as representing a novel species in the genus Streptosporangium, for which the name Streptosporangiumbecharense sp. nov. is proposed. The type strain is SG1T (=DSM 46887T=CECT 8961T).


Assuntos
Actinomycetales/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Actinomycetales/genética , Actinomycetales/isolamento & purificação , África do Norte , Argélia , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
19.
Int J Syst Evol Microbiol ; 66(3): 1371-1376, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26755450

RESUMO

A novel actinobacterium, designated strain SG20T, was isolated from a Saharan soil sample collected from Béni-isguen (Mzab), Ghardaïa province, southern Algeria. The micro-organism developed small roundish sporangia on aerial mycelium that were sessile or carried by very short sporangiophores. The cell-wall peptidoglycan contained meso-diaminopimelic acid and the whole-cell sugars comprised glucose, ribose and mannose, but madurose was not detected. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK-9(H2). The major fatty acids were iso-C16 : 0 and C16 : 0. The phospholipids detected were diphosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine and unknown lipids. The phenotypic and chemotaxonomic characteristics of the novel strain resembled those of recognized members of the genus Streptosporangium. Moreover, phylogenetic analysis based on a 16S rRNA gene sequence generated from the strain identified its closest relative as Streptosporangium jomthongense BCC 53154T (98.5 % similarity), which produces single spores on aerial mycelium, but no sporangia. In hybridization experiments, the DNA-DNA relatedness values recorded between strain SG20T and S. jomthongense DSM 46822T fell well below 70 %. On the basis of phenotypic and genotypic data, strain SG20T can be distinguished as representing a novel species of the genus Streptosporangium, for which the name Streptosporangium saharense sp. nov. is proposed. The type strain is SG20T ( = DSM 46743T = CECT 8840T).


Assuntos
Actinobacteria/classificação , Filogenia , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/isolamento & purificação , África do Norte , Argélia , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
20.
Antonie Van Leeuwenhoek ; 109(2): 311-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26678783

RESUMO

A novel thermophilic filamentous bacterium, designated strain T36(T), was isolated from soil sediment sample from a hot spring source collected in Khenchela province, Algeria. Strain T36(T) was identified as a member of the genus Thermoactinomyces by a polyphasic approach. Strain T36(T) was observed to form white aerial mycelium and non-coloured to pale yellow substrate mycelium, both producing endospores, sessile or borne by short sporophores. The optimum growth temperature and pH were found to be 37-55 °C and 7.0-9.0, respectively and the optimum NaCl concentration for growth was found to be 0-7 % (w/v). The diagnostic diamino acid in the cell wall peptidoglycan was identified as meso-diaminopimelic acid. The predominant menaquinone of strain T36(T) was identified as MK-7 (H0). The major fatty acids were found to be iso-C15:0 and iso-C17:0. The phospholipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphoglycolipid. The chemotaxonomic properties of strain T36(T) are consistent with those shared by members of the genus Thermoactinomyces. 16S rRNA gene sequence analysis indicated that the sequence similarities between strain T36(T) and Thermoactinomyces species with validly published names were less than 98 %. Based on the combined genotypic and phenotypic evidence, it is proposed that strain T36(T) should be classified as representative of a novel species, for which the name Thermoactinomyces khenchelensis sp. nov. is proposed. The type strain is T36(T) (=DSM 45951(T) = CECT 8579(T)).


Assuntos
Sedimentos Geológicos/microbiologia , Fontes Termais/microbiologia , Thermoactinomyces/isolamento & purificação , Argélia , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo , Thermoactinomyces/classificação , Thermoactinomyces/genética , Thermoactinomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...