Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(21): 6439-6458, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725140

RESUMO

Microalgae are excellent sources of biomass containing several important compounds for human and animal nutrition-proteins, lipids, polysaccharides, pigments and antioxidants as well as bioactive secondary metabolites. In addition, they have a great biotechnological potential for nutraceuticals, and pharmaceuticals as well as for CO2 sequestration, wastewater treatment, and potentially also biofuel and biopolymer production. In this review, the industrial production of the most frequently used microalgae genera-Arthrospira, Chlorella, Dunaliella, Haematococcus, Nannochloropsis, Phaeodactylum, Porphyridium and several other species is discussed as concerns the applicability of the most widely used large-scale systems, solar bioreactors (SBRs)-open ponds, raceways, cascades, sleeves, columns, flat panels, tubular systems and others. Microalgae culturing is a complex process in which bioreactor operating parameters and physiological variables closely interact. The requirements of the biological system-microalgae culture are crucial to select the suitable type of SBR. When designing a cultivation process, the phototrophic production of microalgae biomass, it is necessary to employ SBRs that are adequately designed, built and operated to satisfy the physiological requirements of the selected microalgae species, considering also local climate. Moreover, scaling up microalgae cultures for commercial production requires qualified staff working out a suitable cultivation regime. KEY POINTS: • Large-scale solar bioreactors designed for microalgae culturing. • Most frequently used microalgae genera for commercial production. • Scale-up requires suitable cultivation conditions and well-elaborated protocols.


Assuntos
Chlorella , Clorofíceas , Microalgas , Animais , Humanos , Microalgas/metabolismo , Reatores Biológicos , Biotecnologia/métodos , Biomassa , Biocombustíveis
2.
Photochem Photobiol Sci ; 22(4): 795-807, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36550226

RESUMO

The biotechnological potential of Nostoc linckia as a biofertilizer and source of bioactive compounds makes it important to study its growth physiology and productivity. Since nitrogen is a fundamental component of N. linckia biomass, we compared the growth and biochemical composition of cultures grown in BG11 (i.e., in the presence of nitrate) and BG110 (in the absence of nitrate). Cultures grown in BG11 accumulated more cell biomass reaching a dry weight of 1.65 ± 0.06 g L-1, compared to 0.92 ± 0.01 g L-1 in BG110 after 240 h of culture. Biomass productivity was higher in culture grown in BG11 medium (average 317 ± 38 mg L-1 day-1) compared to that attained in BG110 (average 262 ± 37 mg L-1 day-1). The chlorophyll content of cells grown in BG11 increased continuously up to (39.0 ± 1.3 mg L-1), while in BG110 it increased much more slowly (13.6 ± 0.8 mg L-1). Biomass grown in BG11 had higher protein and phycobilin contents. However, despite the differences in biochemical composition and pigment concentration, between BG11 and BG110 cultures, both their net photosynthetic rates and maximum quantum yields of the photosystem II resulted in similar.


Assuntos
Nitratos , Nostoc , Nitratos/metabolismo , Fotossíntese , Nostoc/metabolismo , Clorofila/metabolismo , Biomassa
3.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807489

RESUMO

Long-chain polyunsaturated fatty acids n-3 series (n-3 LC-PUFAs), especially eicosapentaenoic and docosahexaenoic acids, are known to exert preventive effects on obesity and metabolic syndrome. Mainly consumed in the form of fish oil, LC-PUFAs n-3 are also found in significant quantities in other sources such as certain microalgae. The aim of this study was to evaluate the effects of Diacronema lutheri (Dia), a microalga rich in n-3 LC-PUFAs, on metabolic disorders associated with obesity. Three groups of male Wistar rats (n = 6 per group) were submitted for eight weeks to a standard diet or high-fat and high-fructose diet (HF), supplemented or not with 12% of Dia (HF-Dia). Compared to HF rats, HF-Dia rats showed a 41% decrease in plasma triacylglycerol (TAG) and an increase in plasma cholesterol (+35%) as well as in high-density lipoprotein cholesterol (+51%) without change to low-density lipoprotein cholesterol levels. Although fasting glycemia did not change, glucose and insulin tolerance tests highlighted an improvement in glucose and insulin homeostasis. Dia supplementation restored body weight and fat mass, and decreased levels of liver TAG (-75%) and cholesterol (-84%). In HF-Dia rats, leptin was decreased (-30%) below the control level corresponding to a reduction of 68% compared to HF rats. Similarly, the anti-inflammatory cytokines interleukin-4 (IL-4) and IL-10 were restored up to control levels, corresponding to a 74% and 58% increase in HF rats, respectively. In contrast, the level of IL-6 remained similar in the HF and HF-Dia groups and about twice that of the control. In conclusion, these results indicated that the D. lutheri microalga may be beneficial for the prevention of weight gain and improvement in lipid and glucose homeostasis.


Assuntos
Ácidos Graxos Ômega-3 , Síndrome Metabólica , Microalgas , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos , Ácidos Graxos Ômega-3/farmacologia , Frutose , Glucose , Insulina , Masculino , Síndrome Metabólica/complicações , Síndrome Metabólica/prevenção & controle , Obesidade/metabolismo , Ratos , Ratos Wistar , Triglicerídeos
4.
Sci Total Environ ; 842: 156840, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750183

RESUMO

In this work, the performance of a vertical multiplate photobioreactor is analyzed and presented. The photobioreactor consisted of 20 vertical plates (1 m2 each) connected by manifolds and a working volume of 1300 L. The total area occupied (footprint) was 10 m2, while the illuminated area was 40 m2, therefore the ratio of illuminated area to volume ratio was about 30 m-1. The performance of the photobioreactor was evaluated using a culture of Synechocystis PCC 6803, circulated by a centrifuge pump. The results showed that the amount of light captured by the photobioreactor at a plate spacing of 0.5 m was 90.2 % of the light incident on the horizontal surface, while at a plate spacing of 1.0 m, 50.3 % was captured. The corresponding biomass yield, calculated based on the ground area occupied by the reactor, was 26.0 g m-2 day-1 and 7.2 g m-2 day-1, when the plates were spaced at 0.5 m and 1.0 m respectively. Therefore, the light conversion efficiency calculated based on the ground area was significantly higher in the configuration with a plate spacing of 0.5 m, reaching 5.43 % based on PAR (photosynthetically active radiation), and 2.44 % based on solar radiation, giving a value 3.7 higher than when the plates were spaced 1.0 m apart. It was concluded that the light conversion efficiency might be further improved by reducing the plate spacing while also reducing the culture light path.


Assuntos
Microalgas , Energia Solar , Synechocystis , Biomassa , Fotobiorreatores
5.
Physiol Plant ; 174(1): e13619, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34988977

RESUMO

Many agronomic trials demonstrated the nitrogen-fixing ability of the ferns Azolla spp. and its obligate cyanobiont Trichormus azollae. In this study, we have screened the emission of volatile organic compounds (VOCs) and analyzed pigments (chlorophylls, carotenoids) as well as phenolic compounds in Azolla filiculoides-T. azollae symbionts exposed to different light intensities. Our results revealed VOC emission mainly comprising isoprene and methanol (~82% and ~13% of the overall blend, respectively). In particular, by dissecting VOC emission from A. filiculoides and T. azollae, we found that the cyanobacterium does not emit isoprene, whereas it relevantly contributes to the methanol flux. Enhanced isoprene emission capacity (15.95 ± 2.95 nmol m-2  s-1 ), along with increased content of both phenolic compounds and carotenoids, was measured in A. filiculoides grown for long-term under high (700 µmol m-2  s-1 ) rather than medium (400 µmol m-2  s-1 ) and low (100 µmol m-2  s-1 ) light intensity. Moreover, light-responses of chlorophyll fluorescence demonstrated that A. filiculoides was able to acclimate to high growth light. However, exposure of A. filiculoides from low (100 µmol m-2  s-1 ) to very high light (1000 µmol m-2  s-1 ) did not affect, in the short term, photosynthesis, but slightly decreased isoprene emission and leaf pigment content whereas, at the same time, dramatically raised the accumulation of phenolic compounds (i.e. deoxyanthocyanidins and phlobaphenes). Our results highlight a coordinated photoprotection mechanism consisting of isoprene emission and phenolic compounds accumulation employed by A. filiculoides to cope with increasing light intensities.


Assuntos
Gleiquênias , Luz , Nitrogênio , Fenóis , Folhas de Planta
6.
Biomol Eng ; 20(4-6): 243-8, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12919804

RESUMO

During cell division Nannochloropsis releases the thick and multilayered parent cell wall [Phycologia 35 (1996) 253]. The excretion of autoinhibitory substances in Nannochloropsis cultures has been also reported [J. Appl. Phycol. 11 (1999) 123]. Both wall remains and autoinhibitors may negatively affect culture growth and limit the recycling of the exhaust culture medium, a necessity in commercial microalgae plants to reduce production costs. The effect of medium recycling on growth and productivity of Nannochloropsis sp. cultures grown in 120 l annular reactors was investigated. The use of exhaust medium replenished with nutrients decreased significantly culture productivity. The partial removal of the cell walls alleviated, but did not solve the problem. In addition, medium recycling caused a massive formation of cell aggregates accompanied by a progressive deterioration of the culture. The structure of these aggregates was investigated by transmission electron microscopy. The images showed that the aggregates were held together by cell wall remains, which entrapped cells, bacteria and debris resulting from cell decay. Thus, in high density Nannochloropsis cultures, cell walls might play a key role in reducing productivity, favoring contamination and making the biomass unsuitable as aquaculture feed.


Assuntos
Reatores Biológicos/microbiologia , Técnicas de Cultura de Células/métodos , Meios de Cultura/metabolismo , Eucariotos/fisiologia , Eucariotos/ultraestrutura , Micronutrientes/metabolismo , Nitratos/metabolismo , Fosfatos/metabolismo , Adaptação Fisiológica/fisiologia , Adaptação Fisiológica/efeitos da radiação , Agregação Celular/fisiologia , Agregação Celular/efeitos da radiação , Divisão Celular/fisiologia , Divisão Celular/efeitos da radiação , Meios de Cultura/química , Eucariotos/química , Eucariotos/efeitos da radiação , Luz , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...