Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2703: 201-209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646947

RESUMO

Chromosome numbers and information on ploidy level are of great importance for better understanding of plant evolution and taxonomy but also for species identification. Technical developments in flow cytometry dramatically improved the measurement of genome size and triggered a renewed interest in chromosome numbers. Web-based portals make these kind of data accessible for a wide audience in both academia and citizen science. The specialised database of German plant chromosome counts and ploidy estimates comprises to date more than 14,000 records covering 52% of the German taxa. The database is accessed about 70 times per month and became an integral part of several more comprehensive initiatives. One example is the Rothmaler Flora of Germany, which now for the first time features chromosome data with verified origin from the region of interest. Another is the German plant information hub FloraWeb currently amended by several new data sources with the chromosome number database as a major component.


Assuntos
Cromossomos de Plantas , Alemanha , Cromossomos de Plantas/genética , Bases de Dados Factuais , Citometria de Fluxo , Tamanho do Genoma
2.
Am J Bot ; 108(7): 1201-1216, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34180046

RESUMO

PREMISE: Both universal and family-specific targeted sequencing probe kits are becoming widely used for reconstruction of phylogenetic relationships in angiosperms. Within the pantropical Ochnaceae, we show that with careful data filtering, universal kits are equally as capable in resolving intergeneric relationships as custom probe kits. Furthermore, we show the strength in combining data from both kits to mitigate bias and provide a more robust result to resolve evolutionary relationships. METHODS: We sampled 23 Ochnaceae genera and used targeted sequencing with two probe kits, the universal Angiosperms353 kit and a family-specific kit. We used maximum likelihood inference with a concatenated matrix of loci and multispecies-coalescence approaches to infer relationships in the family. We explored phylogenetic informativeness and the impact of missing data on resolution and tree support. RESULTS: For the Angiosperms353 data set, the concatenation approach provided results more congruent with those of the Ochnaceae-specific data set. Filtering missing data was most impactful on the Angiosperms353 data set, with a relaxed threshold being the optimum scenario. The Ochnaceae-specific data set resolved consistent topologies using both inference methods, and no major improvements were obtained after data filtering. Merging of data obtained with the two kits resulted in a well-supported phylogenetic tree. CONCLUSIONS: The Angiosperms353 data set improved upon data filtering, and missing data played an important role in phylogenetic reconstruction. The Angiosperms353 data set resolved the phylogenetic backbone of Ochnaceae as equally well as the family specific data set. All analyses indicated that both Sauvagesia L. and Campylospermum Tiegh. as currently circumscribed are polyphyletic and require revised delimitation.


Assuntos
Magnoliopsida , Ochnaceae , Evolução Biológica , Magnoliopsida/genética , Filogenia , Análise de Sequência de DNA
3.
Front Plant Sci ; 12: 638650, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613613

RESUMO

Plastid DNA sequence data have been traditionally widely used in plant phylogenetics because of the high copy number of plastids, their uniparental inheritance, and the blend of coding and non-coding regions with divergent substitution rates that allow the reconstruction of phylogenetic relationships at different taxonomic ranks. In the present study, we evaluate the utility of the plastome for the reconstruction of phylogenetic relationships in the pantropical plant family Ochnaceae (Malpighiales). We used the off-target sequence read fraction of a targeted sequencing study (targeting nuclear loci only) to recover more than 100 kb of the plastid genome from the majority of the more than 200 species of Ochnaceae and all but two genera using de novo and reference-based assembly strategies. Most of the recalcitrant nodes in the family's backbone were resolved by our plastome-based phylogenetic inference, corroborating the most recent classification system of Ochnaceae and findings from a phylogenomic study based on nuclear loci. Nonetheless, the phylogenetic relationships within the major clades of tribe Ochnineae, which comprise about two thirds of the family's species diversity, received mostly low support. Generally, the phylogenetic resolution was lowest at the infrageneric level. Overall there was little phylogenetic conflict compared to a recent analysis of nuclear loci. Effects of taxon sampling were invoked as the most likely reason for some of the few well-supported discords. Our study demonstrates the utility of the off-target fraction of a target enrichment study for assembling near-complete plastid genomes for a large proportion of samples.

5.
Front Plant Sci ; 11: 1295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013949

RESUMO

The subfamily Bromelioideae is one of the most diverse groups among the neotropical Bromeliaceae. Previously, key innovations have been identified which account for the extraordinary radiation and species richness of this subfamily, especially in the so-called core Bromelioideae. However, in order to extend our understanding of the evolutionary mechanisms, the genomic mechanisms (e.g. polyploidy, dysploidy) that potentially underlie this accelerated speciation also need to be tested. Here, using PI and DAPI staining and flow cytometry we estimated genome size and GC content of 231 plants covering 30 genera and 165 species and combined it with published data. The evolutionary and ecological significance of all three genomic characters was tested within a previously generated dated phylogenetic framework using ancestral state reconstructions, comparative phylogenetic methods, and multiple regressions with climatic variables. The absolute genome size (2C) of Bromelioideae varied between 0.59 and 4.11 pg, and the GC content ranged between 36.73 and 41.43%. The monoploid genome sizes (Cx) differed significantly between core and early diverging lineages. The occurrence of dysploidy and polyploidy was, with few exceptions, limited to the phylogenetically isolated early diverging tank-less lineages. For Cx and GC content Ornstein-Uhlenbeck models outperformed the Brownian motion models suggesting adaptive potential linked to the temperature conditions. 2C-values revealed different rates of evolution in core and early diverging lineages also related to climatic conditions. Our results suggest that polyploidy is not associated with higher net diversification and fast radiation in core bromelioids. On the other hand, although coupled with higher extinction rates, dysploidy, polyploidy, and resulting genomic reorganizations might have played a role in the survival of the early diverging bromelioids in hot and arid environments.

6.
BMC Plant Biol ; 20(1): 111, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164546

RESUMO

BACKGROUND: The angiosperm family Bromeliaceae comprises over 3.500 species characterized by exceptionally high morphological and ecological diversity, but a very low genetic variation. In many genera, plants are vegetatively very similar which makes determination of non flowering bromeliads difficult. This is particularly problematic with living collections where plants are often cultivated over decades without flowering. DNA barcoding is therefore a very promising approach to provide reliable and convenient assistance in species determination. However, the observed low genetic variation of canonical barcoding markers in bromeliads causes problems. RESULT: In this study the low-copy nuclear gene Agt1 is identified as a novel DNA barcoding marker suitable for molecular identification of closely related bromeliad species. Combining a comparatively slowly evolving exon sequence with an adjacent, genetically highly variable intron, correctly matching MegaBLAST based species identification rate was found to be approximately double the highest rate yet reported for bromeliads using other barcode markers. CONCLUSION: In the present work, we characterize Agt1 as a novel plant DNA barcoding marker to be used for barcoding of bromeliads, a plant group with low genetic variation. Moreover, we provide a comprehensive marker sequence dataset for further use in the bromeliad research community.


Assuntos
Bromeliaceae/genética , Código de Barras de DNA Taxonômico , DNA de Plantas/genética , Proteínas de Plantas/genética , Bromeliaceae/classificação
7.
Plant Methods ; 14: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29375648

RESUMO

BACKGROUND: Leaf venation traits are important for many research fields such as systematics and evolutionary biology, plant physiology, climate change, and paleoecology. In spite of an increasing demand for vein trait data, studies are often still data-limited because the development of methods that allow rapid generation of large sets of vein data has lagged behind. Recently, non-destructive X-ray technology has proven useful as an alternative to traditional slow and destructive chemical-based methods. Non-destructive techniques more readily allow the use of herbarium specimens, which provide an invaluable but underexploited resource of vein data and related environmental information. The utility of 2D X-ray technology and microfocus X-ray computed tomography, however, has been compromised by insufficient image resolution. Here, we advanced X-ray technology by increasing image resolution and throughput without the application of contrast agents. RESULTS: For 2D contact microradiography, we developed a method which allowed us to achieve image resolutions of up to 7 µm, i.e. a 3.6-fold increase compared to the industrial standard (25 µm resolution). Vein tracing was further optimized with our image processing standards that were specifically adjusted for different types of leaf structure and the needs of higher imaging throughput. Based on a test dataset, in 91% of the samples the 7 µm approach led to a significant improvement in estimations of minor vein density compared to the industrial standard. Using microfocus X-ray computed tomography, very high-resolution images were obtained from a virtual 3D-2D transformation process, which was superior to that of 3D images. CONCLUSIONS: Our 2D X-ray method with a significantly improved resolution advances rapid non-destructive bulk scanning at a quality that in many cases is sufficient to determine key venation traits. Together with our high-resolution microfocus X-ray computed tomography method, both non-destructive approaches will help in vein trait data mining from museum collections, which provide an underexploited resource of historical and recent data on environmental and evolutionary change. In spite of the significant increase in effective image resolution, a combination of high-throughput and full visibility of the vein network (including the smallest veins and their connectivity) remains challenging, however.

8.
AoB Plants ; 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122738

RESUMO

Reticulate evolution is considered to be among the main mechanisms of plant evolution, often leading to the establishment of new species. However, complex evolutionary scenarios result in a challenging definition of evolutionary and taxonomic units. In the present study, we aimed to examine the evolutionary origin and revise the species status of Campanula baumgartenii, a rare endemic species from the polyploid complex Campanula section Heterophylla. Morphometry, flow cytometric ploidy estimation, AFLPs, as well as chloroplast and nuclear DNA sequence markers were used to assess the morphological and genetic differentiation among C. baumgartenii, C. rotundifolia and other closely related taxa. Tetra- and hexaploid C. baumgartenii is morphologically and molecularly (AFLP) differentiated from sympatric C. rotundifolia. Contrasting signals from nuclear (ITS) and chloroplast (trnL-rpl32) markers suggest a hybrid origin of C. baumgartenii with C. rotundifolia and a taxon related to the alpine C. scheuchzeri as ancestors. Additionally, hexaploid C. baumgartenii currently hybridizes with co-occurring tetraploid C. rotundifolia resulting in pentaploid hybrids, for which C. baumgartenii serves as both seed and pollen donor. Based on the molecular and morphological differentiation, we propose to keep C. baumgartenii as a separate species. This study exemplifies that detailed population genetic studies can provide a solid basis for taxonomic delimitation within Campanula section Heterophylla as well as for sound identification of conservation targets.

9.
Ann Bot ; 120(2): 233-243, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052858

RESUMO

Background and Aims: The distribution of polyploidy along a relatively steep Andean elevation and climatic gradient is studied using the genus Fosterella L.B. Sm. (Bromeliaceae) as a model system. Ecological differentiation of cytotypes and the link of polyploidy with historical biogeographic processes such as dispersal events and range shift are assessed. Methods: 4',6-Diamidino-2-phenylindole (DAPI) staining of nuclei and flow cytometry were used to estimate the ploidy levels of 159 plants from 22 species sampled throughout the distribution range of the genus. Ecological differentiation among ploidy levels was tested by comparing the sets of climatic variables. Ancestral chromosome number reconstruction was carried out on the basis of a previously generated phylogeographic framework. Key Results: This study represents the first assessment of intrageneric, intraspecific and partially intrapopulational cytotype diversity in a genus of the Bromeliaceae family. In Fosterella , the occurrence of polyploidy was limited to the phylogenetically isolated penduliflora and rusbyi groups. Cytotypes were found to be ecologically differentiated, showing that polyploids preferentially occupy colder habitats with high annual temperature variability (seasonality). The combined effects of biogeographic history and adaptive processes are presumed to have shaped the current cytotype distribution in the genus. Conclusions: The results provide indirect evidence for both adaptive ecological and non-adaptive historical processes that jointly influenced the cytotype distribution in the predominantly Andean genus Fosterella (Bromeliaceae). The results also exemplify the role of polyploidy as an important driver of speciation in a topographically highly structured and thus climatically diverse landscape.


Assuntos
Bromeliaceae/classificação , Poliploidia , Adaptação Biológica , Altitude , Evolução Biológica , Bromeliaceae/genética , Clima , Filogeografia , América do Sul
10.
New Phytol ; 214(1): 473-486, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28005294

RESUMO

Vein networks that disobey the global scaling of major vein density with leaf size shed light on functional constraints of vein network formation in dicotyledons. Understanding their evolution, distribution and impact on vein-stomata-climate associations is an important contribution to our global view of vein network organization. Based on vein traits of 55 species of pantropical Ochnaceae, stomata and climatic niche data, and a dated molecular phylogeny, we unveil major structural shifts in vein networks through deep time, relationships between leaf size, vein and stomata traits, and their interplay with climate. Dense 2° veins, reduction of minor veins and the associated breakdown of vein-leaf size scaling evolved multiple times independently in Ochnaceae. In spite of the drastic changes in vein architecture in this venation type, vein and stomatal densities remain correlated. Our study demonstrates that shortening the major vein-stomata distance is economically not less advantageous than by increasing minor vein density, as illustrated by the same degree of coordination between vein and stomatal densities and the similar construction costs across networks with dense 2° veins and those with 'normally' spaced 2° veins.


Assuntos
Folhas de Planta/anatomia & histologia , Feixe Vascular de Plantas/anatomia & histologia , Abastecimento de Água , Teorema de Bayes , Evolução Biológica , Magnoliopsida/anatomia & histologia , Magnoliopsida/classificação , Filogenia , Característica Quantitativa Herdável
11.
Mol Phylogenet Evol ; 107: 152-165, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27989631

RESUMO

Cryptanthus comprises 72 species endemic to eastern Brazil with a center of diversity in the Atlantic Forest. The majority of the species are threatened due to habitat loss. We reconstructed phylogenetic relationships in Cryptanthus based on amplified fragment length polymorphisms (AFLP) including 48 species and 109 accessions. The Bayesian phylogenetic analysis revealed four major lineages in Cryptanthus and provided further evidence for the paraphyly of subgen. Hoplocryptanthus, while subgenus Cryptanthus was resolved as monophyletic. Monophyly of previously recognized morphological species groups at sectional level could not be confirmed. Based on the phylogenetic reconstruction we inferred the evolution of the sex system in Cryptanthus via maximum likelihood (ML) ancestral character reconstruction. Homoecy, the possession of hermaphrodite flowers only, was reconstructed as the ancestral state in the genus and characterizes three of the four main lineages within Cryptanthus. Andromonoecy, the possession of male and hermaphrodite flowers on the same plant, evolved only once and represents a synapomorphy of the fourth main lineage, C. subgen. Cryptanthus. The ancestral biome analysis reconstructed Cerrado (semiarid scrublands and forests) and campos rupestres (rock fields) as the most likely ancestral biomes for the genus. A shift to the Atlantic Forest biome was reconstructed to have occurred twice, in the ancestor of the first diverging lineage within the genus and in the ancestor of the C. subgen. Cryptanthus clade. A shift to the Caatinga (tropical dryland savanna) and one reversal to Cerrado (campos rupestres - rock fields) was reconstructed to have occurred once, in C. bahianus and C. arelii, respectively. The ancestral biome reconstruction indicates a high degree of niche conservatism within Cryptanthus with rare biome shifts throughout the evolution of the genus. Further, our results imply that the current infrageneric taxonomy of Cryptanthus is problematic and requires revision.


Assuntos
Bromeliaceae/classificação , Filogenia , Filogeografia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , Bromeliaceae/genética , Ecossistema , Geografia , Funções Verossimilhança
12.
J Ethnobiol Ethnomed ; 11: 9, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25971673

RESUMO

BACKGROUND: The West African country of Burkina Faso (BFA) is an example for the enduring importance of traditional plant use today. A large proportion of its 17 million inhabitants lives in rural communities and strongly depends on local plant products for their livelihood. However, literature on traditional plant use is still scarce and a comprehensive analysis for the country is still missing. METHODS: In this study we combine the information of a recently published plant checklist with information from ethnobotanical literature for a comprehensive, national scale analysis of plant use in Burkina Faso. We quantify the application of plant species in 10 different use categories, evaluate plant use on a plant family level and use the relative importance index to rank all species in the country according to their usefulness. We focus on traditional medicine and quantify the use of plants as remedy against 22 classes of health disorders, evaluate plant use in traditional medicine on the level of plant families and rank all species used in traditional medicine according to their respective usefulness. RESULTS: A total of 1033 species (50%) in Burkina Faso had a documented use. Traditional medicine, human nutrition and animal fodder were the most important use categories. The 12 most common plant families in BFA differed considerably in their usefulness and application. Fabaceae, Poaceae and Malvaceae were the plant families with the most used species. In this study Khaya senegalensis, Adansonia digitata and Diospyros mespiliformis were ranked the top useful plants in BFA. Infections/Infestations, digestive system disorders and genitourinary disorders are the health problems most commonly addressed with medicinal plants. Fabaceae, Poaceae, Asteraceae, Apocynaceae, Malvaceae and Rubiaceae were the most important plant families in traditional medicine. Tamarindus indica, Vitellaria paradoxa and Adansonia digitata were ranked the most important medicinal plants. CONCLUSIONS: The national-scale analysis revealed systematic patterns of traditional plant use throughout BFA. These results are of interest for applied research, as a detailed knowledge of traditional plant use can a) help to communicate conservation needs and b) facilitate future research on drug screening.


Assuntos
Medicinas Tradicionais Africanas/estatística & dados numéricos , Plantas Medicinais , Burkina Faso/epidemiologia , Conservação dos Recursos Naturais , Humanos , Medicinas Tradicionais Africanas/métodos , Fitoterapia/métodos , Fitoterapia/estatística & dados numéricos
13.
Mol Phylogenet Evol ; 78: 199-214, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24862223

RESUMO

Ochnaceae s.str. (Malpighiales) are a pantropical family of about 500 species and 27 genera of almost exclusively woody plants. Infrafamilial classification and relationships have been controversial partially due to the lack of a robust phylogenetic framework. Including all genera except Indosinia and Perissocarpa and DNA sequence data for five DNA regions (ITS, matK, ndhF, rbcL, trnL-F), we provide for the first time a nearly complete molecular phylogenetic analysis of Ochnaceae s.l. resolving most of the phylogenetic backbone of the family. Based on this, we present a new classification of Ochnaceae s.l., with Medusagynoideae and Quiinoideae included as subfamilies and the former subfamilies Ochnoideae and Sauvagesioideae recognized at the rank of tribe. Our data support a monophyletic Ochneae, but Sauvagesieae in the traditional circumscription is paraphyletic because Testulea emerges as sister to the rest of Ochnoideae, and the next clade shows Luxemburgia+Philacra as sister group to the remaining Ochnoideae. To avoid paraphyly, we classify Luxemburgieae and Testuleeae as new tribes. The African genus Lophira, which has switched between subfamilies (here tribes) in past classifications, emerges as sister to all other Ochneae. Thus, endosperm-free seeds and ovules with partly to completely united integuments (resulting in an apparently single integument) are characters that unite all members of that tribe. The relationships within its largest clade, Ochnineae (former Ochneae), are poorly resolved, but former Ochninae (Brackenridgea, Ochna) are polyphyletic. Within Sauvagesieae, the genus Sauvagesia in its broad circumscription is polyphyletic as Sauvagesia serrata is sister to a clade of Adenarake, Sauvagesia spp., and three other genera. Within Quiinoideae, in contrast to former phylogenetic hypotheses, Lacunaria and Touroulia form a clade that is sister to Quiina. Bayesian ancestral state reconstructions showed that zygomorphic flowers with adaptations to buzz-pollination (poricidal anthers), a syncarpous gynoecium (a near-apocarpous gynoecium evolved independently in Quiinoideae and Ochninae), numerous ovules, septicidal capsules, and winged seeds with endosperm are the ancestral condition in Ochnoideae. Although in some lineages poricidal anthers were lost secondarily, the evolution of poricidal superstructures secured the maintenance of buzz-pollination in some of these genera, indicating a strong selective pressure on keeping that specialized pollination system.


Assuntos
Ochnaceae/classificação , Filogenia , Teorema de Bayes , DNA de Plantas/química , Ochnaceae/genética , Análise de Sequência de DNA
14.
Mol Phylogenet Evol ; 77: 54-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24657431

RESUMO

The saxicolous genus Orthophytum (∼60 species, Bromeliaceae) is endemic to eastern Brazil and diversified in xeric habitats of the Atlantic Rainforest, Caatinga and campos rupestres. Within the genus, two main groups are discerned based on the presence or absence of a pedunculate inflorescence, which are further subdivided into several morphological subgroups. However, these systematic hypotheses have not yet been tested in a molecular phylogenetic framework. Here we present the first phylogenetic analysis of Orthophytum using nuclear and plastid markers (phytochrome C, and trnH-psbA and trnL-trnF spacers). Forty species representing the two main groups and all subgroups of Orthophytum, and the related genera Cryptanthus (8 spp.) and Lapanthus (2 spp.) were analyzed. The phylogenetic reconstruction revealed a well-supported clade termed Eu-Orthophytum, containing species with pedunculate inflorescences only. The Orthophytum species with sessile inflorescence formed two clades: (1) the amoenum group and (2) the vagans group plus O. foliosum, the only pedunculate Orthophytum species found outside Eu-Orthophytum. The vagans clade is in sister group position to Eu-Orthophytum. Within the latter, the subgroup mello-barretoi was sister to the most diversified clade, termed Core Orthophytum. Morphological character state reconstructions of floral characters used in previous taxonomic treatments as key diagnostic characters (penduncle presence, corolla form, and petal appendage form) showed different levels of homoplasy.


Assuntos
Bromeliaceae/genética , Evolução Molecular , Filogenia , Proteínas de Plantas/genética , Teorema de Bayes , Bromeliaceae/anatomia & histologia , Bromeliaceae/classificação , Plastídeos/genética
15.
Mol Phylogenet Evol ; 71: 55-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24513576

RESUMO

We present an integrative model predicting associations among epiphytism, the tank habit, entangling seeds, C3 vs. CAM photosynthesis, avian pollinators, life in fertile, moist montane habitats, and net rates of species diversification in the monocot family Bromeliaceae. We test these predictions by relating evolutionary shifts in form, physiology, and ecology to time and ancestral distributions, quantifying patterns of correlated and contingent evolution among pairs of traits and analyzing the apparent impact of individual traits on rates of net species diversification and geographic expansion beyond the ancestral Guayana Shield. All predicted patterns of correlated evolution were significant, and the temporal and spatial associations of phenotypic shifts with orogenies generally accorded with predictions. Net rates of species diversification were most closely coupled to life in fertile, moist, geographically extensive cordilleras, with additional significant ties to epiphytism, avian pollination, and the tank habit. The highest rates of net diversification were seen in the bromelioid tank-epiphytic clade (D(crown) = 1.05 My⁻¹), associated primarily with the Serra do Mar and nearby ranges of coastal Brazil, and in the core tillandsioids (D(crown) = 0.67 My⁻¹), associated primarily with the Andes and Central America. Six large-scale adaptive radiations and accompanying pulses of speciation account for 86% of total species richness in the family. This study is among the first to test a priori hypotheses about the relationships among phylogeny, phenotypic evolution, geographic spread, and net species diversification, and to argue for causality to flow from functional diversity to spatial expansion to species diversity.


Assuntos
Adaptação Biológica , Bromeliaceae/genética , Filogenia , Biodiversidade , América Latina , Sudoeste dos Estados Unidos
16.
Evolution ; 68(1): 163-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24372602

RESUMO

The evolution of key innovations, novel traits that promote diversification, is often seen as major driver for the unequal distribution of species richness within the tree of life. In this study, we aim to determine the factors underlying the extraordinary radiation of the subfamily Bromelioideae, one of the most diverse clades among the neotropical plant family Bromeliaceae. Based on an extended molecular phylogenetic data set, we examine the effect of two putative key innovations, that is, the Crassulacean acid metabolism (CAM) and the water-impounding tank, on speciation and extinction rates. To this aim, we develop a novel Bayesian implementation of the phylogenetic comparative method, binary state speciation and extinction, which enables hypotheses testing by Bayes factors and accommodates the uncertainty on model selection by Bayesian model averaging. Both CAM and tank habit were found to correlate with increased net diversification, thus fulfilling the criteria for key innovations. Our analyses further revealed that CAM photosynthesis is correlated with a twofold increase in speciation rate, whereas the evolution of the tank had primarily an effect on extinction rates that were found five times lower in tank-forming lineages compared to tank-less clades. These differences are discussed in the light of biogeography, ecology, and past climate change.


Assuntos
Bromeliaceae/genética , Evolução Molecular , Especiação Genética , Modelos Genéticos , Bromeliaceae/classificação , Bromeliaceae/metabolismo , Fotossíntese/genética , Filogenia
17.
PhytoKeys ; (29): 17-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24399894

RESUMO

An updated inventory of the Bromeliaceae for Costa Rica is presented including citations of representative specimens for each species. The family comprises 18 genera and 198 species in Costa Rica, 32 species being endemic to the country. Additional 36 species are endemic to Costa Rica and Panama. Only 4 of the 8 bromeliad subfamilies occur in Costa Rica, with a strong predominance of Tillandsioideae (7 genera/150 spp.; 75.7% of all bromeliad species in Costa Rica). 124 species (62.6%) grow exclusively epiphytic, additional 59 spp. (29.8%) are facultative epiphytes. The most diverse genus is Werauhia, with 59 species (29.8% of the Costa Rican bromeliad flora), followed by Tillandsia with 40 species (20.2%) and Guzmania with 28 spp. (8.6%).


ResumenEs presentada una lista de chequeo actualizada de 18 géneros y 198 especies de Bromeliaceae conocidas de Costa Rica. Por consiguiente, las bromelias endémicas de Costa Rica, ahora comprenden 32 especies. Adicionalmente, 36 especies tienen un endemismo compartido con Panamá. Sólo 4 de las 8 subfamilias actualmente reconocidas ocurren en Costa Rica con fuerte predominio de Tillandsioideae (7 géneros/150 spp.; 75.7% del total de especies de bromelias de Costa Rica). 124 especies (62.6%) crecen como epífita, 59 especies adicionales (29.8%) son epifitas facultativas. El género mejor representado es Werauhia, con 59 especies (29.8% de la flora de bromelias de Costa Rica), seguido por Tillandsia con 40 spp. (20.2%) y Guzmania con 28 especies (8.6%).

18.
Environ Monit Assess ; 184(2): 655-78, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21448628

RESUMO

The international, interdisciplinary biodiversity research project BIOTA AFRICA initiated a standardized biodiversity monitoring network along climatic gradients across the African continent. Due to an identified lack of adequate monitoring designs, BIOTA AFRICA developed and implemented the standardized BIOTA Biodiversity Observatories, that meet the following criteria (a) enable long-term monitoring of biodiversity, potential driving factors, and relevant indicators with adequate spatial and temporal resolution, (b) facilitate comparability of data generated within different ecosystems, (c) allow integration of many disciplines, (d) allow spatial up-scaling, and (e) be applicable within a network approach. A BIOTA Observatory encompasses an area of 1 km(2) and is subdivided into 100 1-ha plots. For meeting the needs of sampling of different organism groups, the hectare plot is again subdivided into standardized subplots, whose sizes follow a geometric series. To allow for different sampling intensities but at the same time to characterize the whole square kilometer, the number of hectare plots to be sampled depends on the requirements of the respective discipline. A hierarchical ranking of the hectare plots ensures that all disciplines monitor as many hectare plots jointly as possible. The BIOTA Observatory design assures repeated, multidisciplinary standardized inventories of biodiversity and its environmental drivers, including options for spatial up- and downscaling and different sampling intensities. BIOTA Observatories have been installed along climatic and landscape gradients in Morocco, West Africa, and southern Africa. In regions with varying land use, several BIOTA Observatories are situated close to each other to analyze management effects.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , África , Animais , Biota , Monitoramento Ambiental/normas , Desenvolvimento Vegetal , Plantas/classificação
19.
BMC Evol Biol ; 11: 311, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22013891

RESUMO

BACKGROUND: Patterns of species diversity are the result of speciation and extinction processes, and molecular phylogenetic data can provide valuable information to derive their variability through time and across clades. Bayesian Markov chain Monte Carlo methods offer a promising framework to incorporate phylogenetic uncertainty when estimating rates of diversification. RESULTS: We introduce a new approach to estimate diversification rates in a Bayesian framework over a distribution of trees under various constant and variable rate birth-death and pure-birth models, and test it on simulated phylogenies. Furthermore, speciation and extinction rates and their posterior credibility intervals can be estimated while accounting for non-random taxon sampling. The framework is particularly suitable for hypothesis testing using Bayes factors, as we demonstrate analyzing dated phylogenies of Chondrostoma (Cyprinidae) and Lupinus (Fabaceae). In addition, we develop a model that extends the rate estimation to a meta-analysis framework in which different data sets are combined in a single analysis to detect general temporal and spatial trends in diversification. CONCLUSIONS: Our approach provides a flexible framework for the estimation of diversification parameters and hypothesis testing while simultaneously accounting for uncertainties in the divergence times and incomplete taxon sampling.


Assuntos
Cyprinidae/genética , Fabaceae/genética , Especiação Genética , Filogenia , Animais , Teorema de Bayes , Simulação por Computador , Extinção Biológica , Modelos Genéticos
20.
Am J Bot ; 98(5): 872-95, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21613186

RESUMO

PREMISE: Bromeliaceae form a large, ecologically diverse family of angiosperms native to the New World. We use a bromeliad phylogeny based on eight plastid regions to analyze relationships within the family, test a new, eight-subfamily classification, infer the chronology of bromeliad evolution and invasion of different regions, and provide the basis for future analyses of trait evolution and rates of diversification. METHODS: We employed maximum-parsimony, maximum-likelihood, and Bayesian approaches to analyze 9341 aligned bases for four outgroups and 90 bromeliad species representing 46 of 58 described genera. We calibrate the resulting phylogeny against time using penalized likelihood applied to a monocot-wide tree based on plastid ndhF sequences and use it to analyze patterns of geographic spread using parsimony, Bayesian inference, and the program S-DIVA. RESULTS: Bromeliad subfamilies are related to each other as follows: (Brocchinioideae, (Lindmanioideae, (Tillandsioideae, (Hechtioideae, (Navioideae, (Pitcairnioideae, (Puyoideae, Bromelioideae))))))). Bromeliads arose in the Guayana Shield ca. 100 million years ago (Ma), spread centrifugally in the New World beginning ca. 16-13 Ma, and dispersed to West Africa ca. 9.3 Ma. Modern lineages began to diverge from each other roughly 19 Ma. CONCLUSIONS: Nearly two-thirds of extant bromeliads belong to two large radiations: the core tillandsioids, originating in the Andes ca. 14.2 Ma, and the Brazilian Shield bromelioids, originating in the Serro do Mar and adjacent regions ca. 9.1 Ma.


Assuntos
Bromeliaceae/genética , Evolução Molecular , Filogenia , Plastídeos/genética , Teorema de Bayes , Evolução Biológica , Bromeliaceae/classificação , DNA de Plantas/genética , Genes de Plantas , Funções Verossimilhança , Dados de Sequência Molecular , NADH Desidrogenase/genética , Proteínas de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...