Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35744419

RESUMO

The dynamic development of new technologies enables the optimal computer technique choice to improve the required quality in today's manufacturing industries. One of the methods of improving the determining process is machine learning. This paper compares different intelligent system methods to identify the tool wear during the turning of gray cast-iron EN-GJL-250 using carbide cutting inserts. During these studies, the experimental investigation was conducted with three various cutting speeds vc (216, 314, and 433 m/min) and the exact value of depth of cut ap and federate f. Furthermore, based on the vibration acceleration signals, appropriate measures were developed that were correlated with the tool condition. In this work, machine learning methods were used to predict tool condition; therefore, two tool classes were proposed, namely usable and unsuitable, and tool corner wear VBc = 0.3 mm was assumed as a wear criterium. The diagnostic measures based on acceleration vibration signals were selected as input to the models. Additionally, the assessment of significant features in the division into usable and unsuitable class was caried out. Finally, this study evaluated chosen methods (classification and regression tree, induced fuzzy rules, and artificial neural network) and selected the most effective model.

2.
Materials (Basel) ; 14(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443292

RESUMO

The paper presents the possibilities of a high-speed camera in recording displacements of thin-walled workpiece during milling made of aluminum alloys, which allowed for an analysis in which it was compared to other methods of testing the deflection of such elements. The tests were carried out during peripheral milling with constant cutting parameters. Deflection of thin-walled workpiece due to cutting forces was measured using a high-speed camera and a laser displacement sensor. Additionally, the experimental results were compared with the theoretical results obtained with the use of the finite element method. The research proved the effectiveness of the use of high-speed camera in diagnostics of thin-walled workpieces during milling with an accuracy of up to 11% compared to measurements made with a displacement laser sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...