Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 245: 120547, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708771

RESUMO

Mountain lakes provide clear drinking water to humankind but are strongly impacted by global change. Benthic biofilms are crucial for maintaining water quality in these oligotrophic lakes, yet little is known about the effects of global change on mountain biofilm communities. By combining analyses of metabarcoding data on 16S and 18S rRNA genes with climatic and environmental data, we investigated global change effects on the composition of biofilm prokaryotic and micro-eukaryotic assemblages in a five-year monitoring program of 26 Pyrenean lakes (2016-2020). Using time-decay relationships and within-lake dissimilarity modelling, we show that the composition of both prokaryotic and micro-eukaryotic biofilm communities significantly shifted and their biodiversity declined from 2016 to 2020. In particular, analyses of temporal trends with linear mixed models indicated an increase in the richness and relative abundance of cyanobacteria, including potentially toxigenic cyanobacteria, and a concomitant decrease in diatom richness and relative abundance. While these compositional shifts may be due to several drivers of global change acting simultaneously on mountain lake biota, water pH and hardness were, from our data, the main environmental variables associated with changes for both prokaryotic and micro-eukaryotic assemblages. Water pH and hardness increased in our lakes over the study period, and are known to increase in Pyrenean lakes due to the intensification of rock weathering as a result of climate change. Given predicted climate trends and if water pH and hardness do cause some changes in benthic biofilms, those changes might be further exacerbated in the future. Such biofilm compositional shifts may induce cascading effects in mountain food webs, threatening the resilience of the entire lake ecosystem. The rise in potentially toxigenic cyanobacteria also increases intoxication risks for humans, pets, wild animals, and livestock that use mountain lakes. Therefore, our study has implications for water quality, ecosystem health, public health, as well as local economies (pastoralism, tourism), and highlights the possible impacts of global change on mountain lakes.

2.
ISME J ; 17(3): 340-353, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36528730

RESUMO

Thiovulum spp. (Campylobacterota) are large sulfur bacteria that form veil-like structures in aquatic environments. The sulfidic Movile Cave (Romania), sealed from the atmosphere for ~5 million years, has several aqueous chambers, some with low atmospheric O2 (~7%). The cave's surface-water microbial community is dominated by bacteria we identified as Thiovulum. We show that this strain, and others from subsurface environments, are phylogenetically distinct from marine Thiovulum. We assembled a closed genome of the Movile strain and confirmed its metabolism using RNAseq. We compared the genome of this strain and one we assembled from public data from the sulfidic Frasassi caves to four marine genomes, including Candidatus Thiovulum karukerense and Ca. T. imperiosus, whose genomes we sequenced. Despite great spatial and temporal separation, the genomes of the Movile and Frasassi Thiovulum were highly similar, differing greatly from the very diverse marine strains. We concluded that cave Thiovulum represent a new species, named here Candidatus Thiovulum stygium. Based on their genomes, cave Thiovulum can switch between aerobic and anaerobic sulfide oxidation using O2 and NO3- as electron acceptors, the latter likely via dissimilatory nitrate reduction to ammonia. Thus, Thiovulum is likely important to both S and N cycles in sulfidic caves. Electron microscopy analysis suggests that at least some of the short peritrichous structures typical of Thiovulum are type IV pili, for which genes were found in all strains. These pili may play a role in veil formation, by connecting adjacent cells, and in the motility of these exceptionally fast swimmers.


Assuntos
Cavernas , Epsilonproteobacteria , Cavernas/química , Enxofre/metabolismo , Epsilonproteobacteria/metabolismo , Romênia , Filogenia
3.
Nat Microbiol ; 7(12): 2068-2077, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36329198

RESUMO

Marine phytoplankton are responsible for about half of the photosynthesis on Earth. Many are mixotrophs, combining photosynthesis with heterotrophic assimilation of organic carbon, but the relative contribution of these two lifestyles is unclear. Here single-cell measurements reveal that Prochlorococcus at the base of the photic zone in the Eastern Mediterranean Sea obtain only ~20% of carbon required for growth by photosynthesis. This is supported by laboratory-calibrated calculations based on photo-physiology parameters and compared with in situ growth rates. Agent-based simulations show that mixotrophic cells could grow tens of metres deeper than obligate photo-autotrophs, deepening the nutricline by ~20 m. Time series from the North Atlantic and North Pacific indicate that, during thermal stratification, on average 8-10% of the Prochlorococcus cells live without enough light to sustain obligate photo-autotrophic populations. Together, these results suggest that mixotrophy underpins the ecological success of a large fraction of the global Prochlorococcus population and its collective genetic diversity.


Assuntos
Prochlorococcus , Prochlorococcus/genética , Carbono , Processos Heterotróficos , Processos Autotróficos , Fotossíntese
4.
Sci Rep ; 12(1): 16456, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180528

RESUMO

Growing evidence suggests that the origins of the panzootic amphibian pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are in Asia. In Taiwan, an island hotspot of high amphibian diversity, no amphibian mass mortality events linked to Bd or Bsal have been reported. We conducted a multi-year study across this subtropical island, sampling 2517 individuals from 30 species at 34 field sites, between 2010 and 2017, and including 171 museum samples collected between 1981 and 2009. We analyzed the skin microbiome of 153 samples (6 species) from 2017 in order to assess any association between the amphibian skin microbiome and the probability of infection amongst different host species. We did not detect Bsal in our samples, but found widespread infection by Bd across central and northern Taiwan, both taxonomically and spatially. Museum samples show that Bd has been present in Taiwan since at least 1990. Host species, geography (elevation), climatic conditions and microbial richness were all associated with the prevalence of infection. Host life-history traits, skin microbiome composition and phylogeny were associated with lower prevalence of infection for high altitude species. Overall, we observed low prevalence and burden of infection in host populations, suggesting that Bd is enzootic in Taiwan where it causes subclinical infections. While amphibian species in Taiwan are currently threatened by habitat loss, our study indicates that Bd is in an endemic equilibrium with the populations and species we investigated. However, ongoing surveillance of the infection is warranted, as changing environmental conditions may disturb the currently stable equilibrium.


Assuntos
Quitridiomicetos , Microbiota , Micoses , Anfíbios , Animais , Batrachochytrium , Humanos , Micoses/epidemiologia , Taiwan/epidemiologia
5.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077481

RESUMO

Protist grazing pressure plays a major role in controlling aquatic bacterial populations, affecting energy flow through the microbial loop and biogeochemical cycles. Predator-escape mechanisms might play a crucial role in energy flow through the microbial loop, but are yet understudied. For example, some bacteria can use planktonic as well as surface-associated habitats, providing a potential escape mechanism to habitat-specific grazers. We investigated the escape response of the marine bacterium Marinobacter adhaerens in the presence of either planktonic (nanoflagellate: Cafeteria roenbergensis) or surface-associated (amoeba: Vannella anglica) protist predators, following population dynamics over time. In the presence of V. anglica, M. adhaerens cell density increased in the water, but decreased on solid surfaces, indicating an escape response towards the planktonic habitat. In contrast, the planktonic predator C. roenbergensis induced bacterial escape to the surface habitat. While C. roenbergensis cell numbers dropped substantially after a sharp initial increase, V. anglica exhibited a slow, but constant growth throughout the entire experiment. In the presence of C. roenbergensis, M. adhaerens rapidly formed cell clumps in the water habitat, which likely prevented consumption of the planktonic M. adhaerens by the flagellate, resulting in a strong decline in the predator population. Our results indicate an active escape of M. adhaerens via phenotypic plasticity (i.e., behavioral and morphological changes) against predator ingestion. This study highlights the potentially important role of behavioral escape mechanisms for community composition and energy flow in pelagic environments, especially with globally rising particle loads in aquatic systems through human activities and extreme weather events.


Assuntos
Plâncton , Estramenópilas , Bactérias , Ecossistema , Humanos , Marinobacter , Água
6.
Sci Total Environ ; 845: 157321, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839872

RESUMO

Freshwater ecosystems are characterized by complex and highly dynamic microbial communities that are strongly structured by their local environment and biota. Accelerating urbanization and growing city populations detrimentally alter freshwater environments. To determine differences in freshwater microbial communities associated with urbanization, full-length 16S rRNA gene PacBio sequencing was performed in a case study from surface waters and sediments from a wastewater treatment plant, urban and rural lakes in the Berlin-Brandenburg region, Northeast Germany. Water samples exhibited highly habitat specific bacterial communities with multiple genera showing clear urban signatures. We identified potentially harmful bacterial groups associated with environmental parameters specific to urban habitats such as Alistipes, Escherichia/Shigella, Rickettsia and Streptococcus. We demonstrate that urbanization alters natural microbial communities in lakes and, via simultaneous warming and eutrophication and creates favourable conditions that promote specific bacterial genera including potential pathogens. Our findings are evidence to suggest an increased potential for long-term health risk in urbanized waterbodies, at a time of rapidly expanding global urbanization. The results highlight the urgency for undertaking mitigation measures such as targeted lake restoration projects and sustainable water management efforts.


Assuntos
Microbiota , Urbanização , Bactérias , Lagos/microbiologia , RNA Ribossômico 16S/genética
7.
Environ Microbiol Rep ; 14(4): 549-558, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35362215

RESUMO

Microbe-mediated enzymatic hydrolysis of organic matter entails the production of hydrolysate, the recovery of which may be more or less efficient. The selfish uptake mechanism, recently discovered, allows microbes to hydrolyze polysaccharides and take up large oligomers, which are then degraded in the periplasmic space. By minimizing the hydrolysate loss, selfish behaviour may be profitable for free-living cells dwelling in a patchy substrate landscape. However, selfish uptake seems to be tailored to algal-derived polysaccharides, abundant in organic particles, suggesting that particle-attached microbes may use this strategy. We tracked selfish polysaccharides uptake in surface microbial communities of the northeastern Mediterranean Sea, linking the occurrence of this processing mode with microbial lifestyle. Additionally, we set up fluorescently labelled polysaccharides incubations supplying phytodetritus to investigate a 'pioneer' scenario for particle-attached microbes. Under both conditions, selfish behaviour was almost exclusively carried out by particle-attached microbes, suggesting that this mechanism may represent an advantage in the race for particle exploitation. Our findings shed light on the selfish potential of particle-attached microbes, suggesting multifaceted foraging strategies exerted by particle colonizers.


Assuntos
Microbiota , Água do Mar , Bactérias/metabolismo , Mar Mediterrâneo , Polissacarídeos/metabolismo , Água do Mar/microbiologia
8.
Commun Biol ; 5(1): 276, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347228

RESUMO

Microbial interactions shape the structure and function of microbial communities with profound consequences for biogeochemical cycles and ecosystem health. Yet, most interaction mechanisms are studied only in model systems and their prevalence is unknown. To systematically explore the functional and interaction potential of sequenced marine bacteria, we developed a trait-based approach, and applied it to 473 complete genomes (248 genera), representing a substantial fraction of marine microbial communities. We identified genome functional clusters (GFCs) which group bacterial taxa with common ecology and life history. Most GFCs revealed unique combinations of interaction traits, including the production of siderophores (10% of genomes), phytohormones (3-8%) and different B vitamins (57-70%). Specific GFCs, comprising Alpha- and Gammaproteobacteria, displayed more interaction traits than expected by chance, and are thus predicted to preferentially interact synergistically and/or antagonistically with bacteria and phytoplankton. Linked trait clusters (LTCs) identify traits that may have evolved to act together (e.g., secretion systems, nitrogen metabolism regulation and B vitamin transporters), providing testable hypotheses for complex mechanisms of microbial interactions. Our approach translates multidimensional genomic information into an atlas of marine bacteria and their putative functions, relevant for understanding the fundamental rules that govern community assembly and dynamics.


Assuntos
Bactérias , Microbiota , Bactérias/metabolismo , Ecologia , Interações Microbianas , Microbiota/genética , Fitoplâncton/genética
9.
Mol Biol Evol ; 38(3): 1040-1059, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33169788

RESUMO

Achromatium is large, hyperpolyploid and the only known heterozygous bacterium. Single cells contain approximately 300 different chromosomes with allelic diversity far exceeding that typically harbored by single bacteria genera. Surveying all publicly available sediment sequence archives, we show that Achromatium is common worldwide, spanning temperature, salinity, pH, and depth ranges normally resulting in bacterial speciation. Although saline and freshwater Achromatium spp. appear phylogenetically separated, the genus Achromatium contains a globally identical, complete functional inventory regardless of habitat. Achromatium spp. cells from differing ecosystems (e.g., from freshwater to saline) are, unexpectedly, equally functionally equipped but differ in gene expression patterns by transcribing only relevant genes. We suggest that environmental adaptation occurs by increasing the copy number of relevant genes across the cell's hundreds of chromosomes, without losing irrelevant ones, thus maintaining the ability to survive in any ecosystem type. The functional versatility of Achromatium and its genomic features reveal alternative genetic and evolutionary mechanisms, expanding our understanding of the role and evolution of polyploidy in bacteria while challenging the bacterial species concept and drivers of bacterial speciation.


Assuntos
Evolução Biológica , Genoma Bacteriano , Sedimentos Geológicos/microbiologia , Bactérias Aeróbias Gram-Negativas/genética , Microbiologia da Água , Ecossistema , Bactérias Aeróbias Gram-Negativas/metabolismo , Heterozigoto , Filogenia , Poliploidia
10.
mBio ; 11(4)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788385

RESUMO

Many microorganisms produce resting cells with very low metabolic activity that allow them to survive phases of prolonged nutrient or energy stress. In cyanobacteria and some eukaryotic phytoplankton, the production of resting stages is accompanied by a loss of photosynthetic pigments, a process termed chlorosis. Here, we show that a chlorosis-like process occurs under multiple stress conditions in axenic laboratory cultures of Prochlorococcus, the dominant phytoplankton linage in large regions of the oligotrophic ocean and a global key player in ocean biogeochemical cycles. In Prochlorococcus strain MIT9313, chlorotic cells show reduced metabolic activity, measured as C and N uptake by Nanoscale secondary ion mass spectrometry (NanoSIMS). However, unlike many other cyanobacteria, chlorotic Prochlorococcus cells are not viable and do not regrow under axenic conditions when transferred to new media. Nevertheless, cocultures with a heterotrophic bacterium, Alteromonas macleodii HOT1A3, allowed Prochlorococcus to survive nutrient starvation for months. We propose that reliance on co-occurring heterotrophic bacteria, rather than the ability to survive extended starvation as resting cells, underlies the ecological success of ProchlorococcusIMPORTANCE The ability of microorganisms to withstand long periods of nutrient starvation is key to their survival and success under highly fluctuating conditions that are common in nature. Therefore, one would expect this trait to be prevalent among organisms in the nutrient-poor open ocean. Here, we show that this is not the case for Prochlorococcus, a globally abundant and ecologically important marine cyanobacterium. Instead, Prochlorococcus relies on co-occurring heterotrophic bacteria to survive extended phases of nutrient and light starvation. Our results highlight the power of microbial interactions to drive major biogeochemical cycles in the ocean and elsewhere with consequences at the global scale.


Assuntos
Anemia Hipocrômica , Interações Microbianas , Nutrientes , Prochlorococcus/metabolismo , Alteromonas/metabolismo , Cultura Axênica , Genoma Bacteriano , Processos Heterotróficos , Viabilidade Microbiana , Filogenia , Prochlorococcus/crescimento & desenvolvimento , Água do Mar/microbiologia
11.
Environ Microbiol ; 22(8): 3593-3607, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32656901

RESUMO

In this study, we used in situ transplantations to provide the first evidence of horizontal acquisition of cyanobacterial symbionts by a marine sponge. The acquisition of the symbionts by the host sponge Petrosia ficiformis, which was observed in distinct visible patches, appeared several months after transplantation and at different times on different sponge specimens. We further used 16S rRNA gene amplicon sequencing of genomic DNA (gDNA) and complementary DNA (cDNA) and metatranscriptomics to investigate how the acquisition of the symbiotic cyanobacterium Candidatus Synechococcus feldmannii perturbed the diverse microbiota associated with the host P. ficiformis. To our surprise, the microbiota remained relatively stable during cyanobacterial symbiont acquisition at both structural (gDNA content) and activity (cDNA expression) levels. At the transcriptomic level, photosynthesis was the primary function gained following the acquisition of cyanobacteria. Genes involved in carotene production and oxidative stress tolerance were among those highly expressed by Ca. S. feldmannii, suggesting that this symbiont may protect itself and its host from damaging light radiation.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Poríferos/microbiologia , Simbiose/fisiologia , Animais , Carotenoides/metabolismo , Cianobactérias/genética , Interações Microbianas/fisiologia , Microbiota , Estresse Oxidativo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
mSphere ; 5(4)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611696

RESUMO

Phytoplankton is a key component of aquatic microbial communities, and metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon (DOC). Yet, the impact of primary production on bacterial activity and community composition remains largely unknown, as, for example, in the case of aerobic anoxygenic phototrophic (AAP) bacteria that utilize both phytoplankton-derived DOC and light as energy sources. Here, we studied how reduction of primary production in a natural freshwater community affects the bacterial community composition and its activity, focusing primarily on AAP bacteria. The bacterial respiration rate was the lowest when photosynthesis was reduced by direct inhibition of photosystem II and the highest in ambient light condition with no photosynthesis inhibition, suggesting that it was limited by carbon availability. However, bacterial assimilation rates of leucine and glucose were unaffected, indicating that increased bacterial growth efficiency (e.g., due to photoheterotrophy) can help to maintain overall bacterial production when low primary production limits DOC availability. Bacterial community composition was tightly linked to light intensity, mainly due to the increased relative abundance of light-dependent AAP bacteria. This notion shows that changes in bacterial community composition are not necessarily reflected by changes in bacterial production or growth and vice versa. Moreover, we demonstrated for the first time that light can directly affect bacterial community composition, a topic which has been neglected in studies of phytoplankton-bacteria interactions.IMPORTANCE Metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon in aquatic environments, and yet how changes in the rate of primary production affect the bacterial activity and community composition remains understudied. Here, we experimentally limited the rate of primary production either by lowering light intensity or by adding a photosynthesis inhibitor. The induced decrease had a greater influence on bacterial respiration than on bacterial production and growth rate, especially at an optimal light intensity. This suggests that changes in primary production drive bacterial activity, but the effect on carbon flow may be mitigated by increased bacterial growth efficiencies, especially of light-dependent AAP bacteria. Bacterial activities were independent of changes in bacterial community composition, which were driven by light availability and AAP bacteria. This direct effect of light on composition of bacterial communities has not been documented previously.


Assuntos
Bactérias Aeróbias/metabolismo , Ecossistema , Microbiota , Processos Fototróficos , Bactérias Aeróbias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Água Doce/microbiologia , Luz , Fotossíntese , Água do Mar/microbiologia
14.
PLoS One ; 14(12): e0223294, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31830057

RESUMO

Cyanobacteria and associated heterotrophic bacteria hold key roles in carbon as well as nitrogen fixation and cycling in the Baltic Sea due to massive cyanobacterial blooms each summer. The species specific activities of different cyanobacterial species as well as the N- and C-exchange of associated heterotrophic bacteria in these processes, however, are widely unknown. Within one time series experiment we tested the cycling in a natural, late stage cyanobacterial bloom by adding 13C bi-carbonate and 15N2, and performed sampling after 10 min, 30 min, 1 h, 6 h and 24 h in order to determine the fixing species as well as the fate of the fixed carbon and nitrogen in the associations. Uptake of 15N and 13C isotopes by the most abundant cyanobacterial species as well as the most abundant associated heterotrophic bacterial groups was then analysed by NanoSIMS. Overall, the filamentous, heterocystous species Dolichospermum sp., Nodularia sp., and Aphanizomenon sp. revealed no or erratic uptake of carbon and nitrogen, indicating mostly inactive cells. In contrary, non-heterocystous Pseudanabaena sp. dominated the nitrogen and carbon fixation, with uptake rates up to 1.49 ± 0.47 nmol N h-1 l-1 and 2.55 ± 0.91 nmol C h-1 l-1. Associated heterotrophic bacteria dominated the subsequent nitrogen remineralization with uptake rates up to 1.2 ± 1.93 fmol N h-1 cell -1, but were also indicative for fixation of di-nitrogen.


Assuntos
Carbono/metabolismo , Cianobactérias/classificação , Cianobactérias/crescimento & desenvolvimento , Eutrofização , Fixação de Nitrogênio , Nitrogênio/metabolismo , Fitoplâncton/microbiologia , Países Bálticos , Cianobactérias/genética , Cianobactérias/metabolismo , Água do Mar/microbiologia
15.
FEMS Microbiol Lett ; 366(14)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31418783

RESUMO

High-Throughput Sequencing technologies are providing unprecedented inventories of microbial communities in aquatic samples, offering an invaluable tool to estimate the impact of anthropogenic pressure on marine communities. In this case study, the Mediterranean touristic site of Aci Castello (Italy) was investigated by High-Throughput Sequencing of 16S and 18S rRNA genes. The sampling area falls within a Marine Protected Area and, notwithstanding, features an untreated urban wastewater discharge. Seawater samples were collected close to the wastewater output (COL) and at a second station about 400 m further off (PAN), before and after a summer increase in population. Prokaryotic communities clustered according to stations, rather than to seasons. While PAN showed a typical, not impacted, marine microbial composition, COL was consistently enriched in Epsilonproteobacteria and Firmicutes. Protist communities showed a peculiar clustering, as COL at springtime stood alone and was dominated by Ciliophora, while the other samples were enriched in Dinophyta. Analysis of alternative, detectable by High-Throughput Sequencing, microbial indicators, including both faecal- and sewage-associated, allowed uncovering the different sources of pollution in coastal and anthropogenically impacted marine ecosystems, underpinning the relevance of High-Throughput Sequencing-based screening as rapid and precise method for water quality management.


Assuntos
Organismos Aquáticos/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Água do Mar/microbiologia , Microbiologia da Água , Poluição da Água , Organismos Aquáticos/classificação , Biodiversidade , Monitoramento Ambiental , Fezes/microbiologia , Biblioteca Gênica , Itália , Microbiota , Filogenia
16.
Sci Rep ; 9(1): 9673, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273307

RESUMO

Wastewater treatment is crucial to environmental hygiene in urban environments. However, wastewater treatment plants (WWTPs) collect chemicals, organic matter, and microorganisms including pathogens and multi-resistant bacteria from various sources which may be potentially released into the environment via WWTP effluent. To better understand microbial dynamics in WWTPs, we characterized and compared the bacterial community of the inflow and effluent of a WWTP in Berlin, Germany using full-length 16S rRNA gene sequences, which allowed for species level determination in many cases and generally resolved bacterial taxa. Significantly distinct bacterial communities were identified in the wastewater inflow and effluent samples. Dominant operational taxonomic units (OTUs) varied both temporally and spatially. Disease associated bacterial groups were efficiently reduced in their relative abundance from the effluent by the WWTP treatment process, except for Legionella and Leptospira species which demonstrated an increase in relative proportion from inflow to effluent. This indicates that WWTPs, while effective against enteric bacteria, may enrich and release other potentially pathogenic bacteria into the environment. The taxonomic resolution of full-length 16S rRNA genes allows for improved characterization of potential pathogenic taxa and other harmful bacteria which is required to reliably assess health risk.


Assuntos
Bactérias/classificação , Bactérias/genética , RNA Ribossômico 16S/genética , Águas Residuárias/microbiologia , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Filogenia , RNA Ribossômico 16S/análise
17.
FEMS Microbiol Ecol ; 94(2)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29267881

RESUMO

Marine sponges form symbiotic relationships with complex microbial communities, yet little is known about the mechanisms by which these microbes regulate their behavior through gene expression. Many bacterial communities regulate gene expression using chemical signaling termed quorum sensing. While a few previous studies have shown presence of N-acyl-homoserine lactone (AHL)-based quorum sensing in marine sponges, the chemical identity of AHL signals has been published for only two sponge species. In this study, we screened for AHLs in extracts from 15 sponge species (109 specimens in total) from the Mediterranean and Red Sea, using a wide-range AHL biosensor. This is the first time that AHL presence was examined over time in sponges. We detected the presence of AHL in 46% of the sponge species and found that AHL signals differ for certain sponge species in time and across sponge individuals. Furthermore, for the Mediterranean sponge species Sarcotragus fasciculatus, we identified 14 different AHLs. The constant presence of specific AHL molecules in all specimens, together with varying signaling molecules between the different specimens, makes Sa. fasciculatus a good model to further investigate the function of quorum sensing in sponge-associated bacteria. This study extends the knowledge of AHL-based quorum sensing in marine sponges.


Assuntos
Acil-Butirolactonas/metabolismo , Poríferos/microbiologia , Percepção de Quorum/fisiologia , Animais , Humanos , Oceano Índico , Transdução de Sinais , Simbiose
18.
Front Microbiol ; 7: 749, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242762

RESUMO

Over the last two decades, increasing attention has been paid to the impact of jellyfish blooms on marine communities. Aurelia aurita is one of the most studied of the Scyphozoans, and several studies have been carried out to describe its role as a top-down controller within the classical food web. However, little data are available to define the effects of these jellyfish on microbial communities. The aims of this study were to describe the predation impact of A. aurita ephyrae on a natural microplanktonic assemblage, and to determine any reshaping effects on the prokaryote community composition and functioning. Surface coastal water was used to set up a 24-h grazing experiment in microcosms. Samples were collected to determine the variations in prey biomass, heterotrophic carbon production (HCP), extracellular leucine aminopeptidase activity, and grazing pressure. A next-generation sequencing technique was used to investigate biodiversity shifts within the prokaryote and protist communities through the small subunit rRNA tag approach. This study shows that A. aurita ephyrae were responsible for large decreases in the abundances of the more motile microplankton groups, such as tintinnids, Dinophyceae, and aloricate ciliates. Bacillariophyceae and Mediophyceae showed smaller reductions. No evidence of selective predation emerged in the analysis of the community diversity down to the family level. The heterotrophic prokaryote biomass increased significantly (by up to 45%), in parallel with increases in HCP and leucine aminopeptidase activity (40%). Significant modifications were detected in prokaryotic community composition. Some classes of Gammaproteobacteria and Flavobacteriia showed higher relative abundances when exposed to A. aurita ephyrae, while there was a net decrease for Alphaproteobacteria. Overall, this study provides new insight into the effects of A. aurita on microbial communities, underlining their selective predation toward the more motile groups of microplankton and their impact on prokaryotic assemblages, by favoring blooms of copiotrophic taxa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...