Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786084

RESUMO

Relevant advances have been made in the management of relapsed/refractory (r/r) Hodgkin Lymphomas (HL) with the use of the anti-CD30 antibody-drug conjugate (ADC) brentuximab-vedotin (Bre-Ved). Unfortunately, most patients eventually progress despite the excellent response rates and tolerability. In this report, we describe an ADC composed of the aminobisphosphonate zoledronic acid (ZA) conjugated to Bre-Ved by binding the free amino groups of this antibody with the phosphoric group of ZA. Liquid chromatography-mass spectrometry, inductively coupled plasma-mass spectrometry, and matrix-assisted laser desorption ionization-mass spectrometry analyses confirmed the covalent linkage between the antibody and ZA. The novel ADC has been tested for its reactivity with the HL/CD30+ lymphoblastoid cell lines (KMH2, L428, L540, HS445, and RPMI6666), showing a better titration than native Bre-Ved. Once the HL-cells are entered, the ADC co-localizes with the lysosomal LAMP1 in the intracellular vesicles. Also, this ADC exerted a stronger anti-proliferative and pro-apoptotic (about one log fold) effect on HL-cell proliferation compared to the native antibody Bre-Ved. Eventually, Bre-Ved-ZA ADC, in contrast with the native antibody, can trigger the proliferation and activation of cytolytic activity of effector-memory Vδ2 T-lymphocytes against HL-cell lines. These findings may support the potential use of this ADC in the management of r/r HL.


Assuntos
Brentuximab Vedotin , Imunoconjugados , Antígeno Ki-1 , Ácido Zoledrônico , Humanos , Ácido Zoledrônico/farmacologia , Ácido Zoledrônico/uso terapêutico , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Imunoconjugados/química , Brentuximab Vedotin/farmacologia , Brentuximab Vedotin/uso terapêutico , Antígeno Ki-1/metabolismo , Antígeno Ki-1/imunologia , Linhagem Celular Tumoral , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/patologia , Doença de Hodgkin/imunologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
2.
Cancers (Basel) ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36765569

RESUMO

Tumor-associated fibroblasts (TAF) exert immunosuppressive effects in colorectal carcinoma (CRC), impairing the recognition of tumor cells by effector lymphocytes, including Vδ2 T cells. Herein, we show that CRC-derived TAF can be turned by zoledronic acid (ZA), in soluble form or as antibody-drug conjugate (ADC), into efficient stimulators of Vδ2 T cells. CRC-TAF, obtained from patients, express the epidermal growth factor receptor (EGFR) and the butyrophilin family members BTN3A1/BTN2A1. These butyrophilins mediate the presentation of the phosphoantigens, accumulated in the cells due to ZA effect, to Vδ2 T cells. CRC-TAF exposed to soluble ZA acquired the ability to trigger the proliferation of Vδ2 T cells, in part represented by effector memory cells lacking CD45RA and CD27. In turn, expanded Vδ2 T cells exerted relevant cytotoxic activity towards CRC cells and CRC-TAF when primed with soluble ZA. Of note, also the ADC made of the anti-EGFR cetuximab (Cet) and ZA (Cet-ZA), that we recently described, induced the proliferation of anti-tumor Vδ2 T lymphocytes and their activation against CRC-TAF. These findings indicate that ZA can educate TAF to stimulate effector memory Vδ2 T cells; the Cet-ZA ADC formulation can lead to the precise delivery of ZA to EGFR+ cells, with a double targeting of TAF and tumor cells.

3.
Cancers (Basel) ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36765872

RESUMO

Immune checkpoint (IC) molecules act as receptors, expressed on immune effector cells, that are able to recognize specific ligands in normal or tumor cells [...].

4.
Cancers (Basel) ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672440

RESUMO

Fibroblasts are incredible cells [...].

5.
Cancers (Basel) ; 15(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672464

RESUMO

The identification and validation of simple, reliable and reproducible three dimensional (3D) in vitro culture systems represent a major challenge in the field of anticancer drug development [...].

6.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36543375

RESUMO

BACKGROUND: Antibody-drug conjugates (ADC) are essential therapeutic options to treat solid and hematological cancers. The anti-epidermal growth factor-receptor (EGFR) antibody cetuximab (Cet) is used for the therapy of colorectal carcinoma (CRC). Anti-CRC Vδ2 cytolytic T lymphocytes can be elicited by the priming of tumor cells with the aminobisphosphonate zoledronic acid (ZA) and consequent presentation of isopentenyl pyrophosphates through butyrophilin (BTN) family members such as BTN3A1 and BTN2A1. A major drawback that impairs the targeting of ZA to CRC is the bone tropism of aminobisphosphonates. METHODS: The phosphoric group of ZA was linked to free amino groups of Cet in the presence of imidazole following the labeling of phosphoric groups of DNA to amino groups of proteins. The generation of Cet-ZA ADC was confirmed by matrix assisted laser desorption ionization mass spectrometry and inductively coupled plasma-mass spectrometry analysis. Thirteen CRC organoids were obtained with a chemically defined serum-free medium in Geltrex domes. Proliferation and activation of cytolytic activity against CRC organoids by Vδ2 T cells was detected with flow cytometry, crystal violet and cytotoxic probe assays and image analysis. Immunohistochemistry and quantification of BTN3A1 or BTN2A1 expression and the number of tumor infiltrating Vδ2 T cells in CRC were performed by automatic immunostaining, whole slide scanning and computerized analysis of digital pathology imaging. RESULTS: The novel ADC Cet-ZA was generated with a drug antibody ratio of 4.3 and displayed a reactivity similar to the unconjugated antibody. More importantly, patient-derived CRC organoids, or CRC tumor cell suspensions, could trigger the expansion of Vδ2 T cells from peripheral blood and tumor infiltrating lymphocytes when primed with Cet-ZA. Furthermore, Cet-ZA triggered Vδ2 T cell-mediated killing of CRC organoids. The expression of BTN3A1 and BTN2A1 was detected not only in CRC organoids but also in CRC specimens, together with a considerable amount of tumor infiltrating Vδ2 T cells. CONCLUSIONS: These findings are proof of concept that the Cet-ZA ADC can be used to target specifically CRC organoids and may suggest a new experimental approach to deliver aminobisphosphonates to EGFR+ solid tumors.


Assuntos
Neoplasias Colorretais , Imunoconjugados , Humanos , Ácido Zoledrônico/farmacologia , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Organoides , Butirofilinas , Antígenos CD
7.
Cancers (Basel) ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008423

RESUMO

PURPOSE: The biochemical composition and architecture of the extracellular matrix (ECM) is known to condition development and invasiveness of neoplasms. To clarify this point, we analyzed ECM stiffness, collagen cross-linking and anisotropy in lymph nodes (LN) of Hodgkin lymphomas (HL), follicular lymphomas (FL) and diffuse large B-cell lymphomas (DLBCL), compared with non-neoplastic LN (LDN). METHODS AND RESULTS: We found increased elastic (Young's) modulus in HL and advanced FL (grade 3A) over LDN, FL grade 1-2 and DLBCL. Digital imaging evidenced larger stromal areas in HL, where increased collagen cross-linking was found; in turn, architectural modifications were documented in FL3A by scanning electron microscopy and enhanced anisotropy by polarized light microscopy. Interestingly, HL expressed high levels of lysyl oxidase (LOX), an enzyme responsible for collagen cross-linking. Using gelatin scaffolds fabricated with a low elastic modulus, comparable to that of non-neoplastic tissues, we demonstrated that HL LN-derived mesenchymal stromal cells and HL cells increased the Young's modulus of the extracellular microenvironment through the expression of LOX. Indeed, LOX inhibition by ß-aminopropionitrile prevented the gelatin stiffness increase. CONCLUSIONS: These data indicate that different mechanical, topographical and/or architectural modifications of ECM are detectable in human lymphomas and are related to their histotype and grading.

8.
Mol Ther Oncolytics ; 24: 26-42, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-34977340

RESUMO

The discovery of immune checkpoints (ICs) and the development of specific blockers to relieve immune effector cells from this inhibiting mechanism has changed the view of anti-cancer therapy. In addition to cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed death 1 (PD1), classical ICs of T lymphocytes and recently described also on a fraction of natural killer (NK) cells, several NK cell receptors, including killer immunoglobulin-like inhibitory receptors (KIRs) and NGK2A, have been recognized as checkpoint members typical of the NK cell population. This offers the opportunity of a dual-checkpoint inhibition approach, targeting classical and non-classical ICs and leading to a synergistic therapeutic effect. In this review, we will overview and discuss this new perspective, focusing on the most relevant candidates for this role among the variety of potential NK ICs. Beside listing and defining classical ICs expressed also by NK cells, or non-classical ICs either on T or on NK cells, we will address their role in NK cell survival, chronic stimulation or functional exhaustion, and the potential relevance of this phenomenon on anti-tumor immune response. Furthermore, NK ICs will be proposed as possible new targets for the development of efficient combined immunotherapy, not forgetting the relevant concerns that may be raised on NK IC blockade. Finally, the impact of epigenetic drugs in such a complex therapeutic picture will be briefly addressed.

9.
Haematologica ; 107(4): 909-920, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34109776

RESUMO

Shedding of ADAM10 substrates, like TNFa or CD30, can affect both anti-tumor immune response and antibody-drug-conjugate (ADC)-based immunotherapy. We have published two new ADAM10 inhibitors, LT4 and MN8 able to prevent such shedding in Hodgkin lymphoma (HL). Since tumor tissue architecture deeply influences the outcome of anti-cancer treatments, we set up a new threedimensional (3D) culture systems to verify whether ADAM10 inhibitors can contribute to, or enhance, the anti-lymphoma effects of the ADC brentuximab-vedotin (BtxVed). In order to recapitulate some aspects of lymphoma structure and architecture, we assembled two 3D culture models: mixed spheroids made of HL lymph node (LN) mesenchymal stromal cells (MSC) and Reed Sternberg/Hodgkin lymphoma cells (HL cells) or collagen scaffolds repopulated with LN-MSC and HL cells. In these 3D systems we found that: i) the ADAM10 inhibitors LT4 and MN8 reduce ATP content or glucose consumption, related to cell proliferation, increasing lactate dehydrogenase release as a cell damage hallmark; ii) these events are paralleled by mixed spheroids size reduction and inhibition of CD30 and TNFa shedding; iii) the effects observed can be reproduced in repopulated HL LN-derived matrix or collagen scaffolds; iv) ADAM10 inhibitors enhance the anti-lymphoma effect of the anti-CD30 ADC BtxVed both in conventional cultures and in repopulated scaffolds. Thus, we provide evidence for a direct and combined antilymphoma effect of ADAM10 inhibitors with BtxVed, leading to the improvement of ADC effects; this is documented in 3D models recapitulating features of the LN microenvironment, that can be proposed as a reliable tool for anti-lymphoma drug testing.


Assuntos
Proteína ADAM10/antagonistas & inibidores , Brentuximab Vedotin/uso terapêutico , Doença de Hodgkin , Imunoconjugados , Linfoma , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/patologia , Humanos , Imunoconjugados/uso terapêutico , Antígeno Ki-1 , Linfoma/tratamento farmacológico , Proteínas de Membrana , Microambiente Tumoral
10.
Cancers (Basel) ; 13(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298630

RESUMO

Several approaches have shown that the immune response against tumors strongly affects patients' clinical outcome. Thus, the study of anti-tumor immunity is critical to understand and potentiate the mechanisms underlying the elimination of tumor cells. Natural killer (NK) cells are members of innate immunity and represent powerful anti-tumor effectors, able to eliminate tumor cells without a previous sensitization. Thus, the study of their involvement in anti-tumor responses is critical for clinical translation. This analysis has been performed in vitro, co-incubating NK with tumor cells and quantifying the cytotoxic activity of NK cells. In vivo confirmation has been applied to overcome the limits of in vitro testing, however, the innate immunity of mice and humans is different, leading to discrepancies. Different activating receptors on NK cells and counter-ligands on tumor cells are involved in the antitumor response, and innate immunity is strictly dependent on the specific microenvironment where it takes place. Thus, three-dimensional (3D) culture systems, where NK and tumor cells can interact in a tissue-like architecture, have been created. For example, tumor cell spheroids and primary organoids derived from several tumor types, have been used so far to analyze innate immune response, replacing animal models. Herein, we briefly introduce NK cells and analyze and discuss in detail the properties of 3D tumor culture systems and their use for the study of tumor cell interactions with NK cells.

11.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067041

RESUMO

Enzymes, once considered static molecular machines acting in defined spatial patterns and sites of action, move to different intra- and extracellular locations, changing their function. This topological regulation revealed a close cross-talk between proteases and signaling events involving post-translational modifications, membrane tyrosine kinase receptors and G-protein coupled receptors, motor proteins shuttling cargos in intracellular vesicles, and small-molecule messengers. Here, we highlight recent advances in our knowledge of regulation and function of A Disintegrin And Metalloproteinase (ADAM) endopeptidases at specific subcellular sites, or in multimolecular complexes, with a special focus on ADAM10, and tumor necrosis factor-α convertase (TACE/ADAM17), since these two enzymes belong to the same family, share selected substrates and bioactivity. We will discuss some examples of ADAM10 activity modulated by changing partners and subcellular compartmentalization, with the underlying hypothesis that restraining protease activity by spatial segregation is a complex and powerful regulatory tool.


Assuntos
Proteína ADAM10/metabolismo , Animais , Humanos , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Transdução de Sinais , Especificidade por Substrato
13.
Cancers (Basel) ; 12(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668783

RESUMO

Both natural and synthetic nanoparticles have been proposed as drug carriers in cancer treatment, since they can increase drug accumulation in target tissues, optimizing the therapeutic effect. As an example, extracellular vesicles (EV), including exosomes (Exo), can become drug vehicles through endogenous or exogenous loading, amplifying the anticancer effects at the tumor site. In turn, synthetic nanoparticles (NP) can carry therapeutic molecules inside their core, improving solubility and stability, preventing degradation, and controlling their release. In this review, we summarize the recent advances in nanotechnology applied for theranostic use, distinguishing between passive and active targeting of these vehicles. In addition, examples of these models are reported: EV as transporters of conventional anticancer drugs; Exo or NP as carriers of small molecules that induce an anti-tumor immune response. Finally, we focus on two types of nanoparticles used to stimulate an anticancer immune response: Exo carried with A Disintegrin And Metalloprotease-10 inhibitors and NP loaded with aminobisphosphonates. The former would reduce the release of decoy ligands that impair tumor cell recognition, while the latter would activate the peculiar anti-tumor response exerted by γδ T cells, creating a bridge between innate and adaptive immunity.

14.
Front Immunol ; 11: 564887, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424829

RESUMO

To improve pathogenetic studies in cancer development and reliable preclinical testing of anti-cancer treatments, three-dimensional (3D) cultures, including spheroids, have been widely recognized as more physiologically relevant in vitro models of in vivo tumor behavior. Currently, the generation of uniformly sized spheroids is still challenging: different 3D cell culture methods produce heterogeneous populations in dimensions and morphology, that may strongly influence readouts reliability correlated to tumor growth rate or antitumor natural killer (NK) cell-mediated cytotoxicity. In this context, an increasing consensus claims the integration of microfluidic technologies within 3D cell culture, as the physical characterization of tumor spheroids is unavoidably demanded to standardize protocols and assays for in vitro testing. In this paper, we employed a flow-based method specifically conceived to measure weight, size and focused onto mass density values of tumor spheroids. These measurements are combined with confocal and digital imaging of such samples. We tested the spheroids of four colorectal cancer (CRC) cell lines that exhibit statistically relevant differences in their physical characteristics, even though starting from the same cell seeding density. These variations are seemingly cell line-dependent and associated with the number of growing cells and the degree of spheroid compaction as well, supported by different adenosine-triphosphate contents. We also showed that this technology can estimate the NK cell killing efficacy by measuring the weight loss and diameter shrinkage of tumor spheroids, alongside with the commonly used cell viability in vitro test. As the activity of NK cells relies on their infiltration rate, the in vitro sensitivity of CRC spheroids proved to be exposure time- and cell line-dependent with direct correlation to the cell viability reduction. All these functional aspects can be measured by the system and are documented by digital image analysis. In conclusion, this flow-based method potentially paves the way towards standardization of 3D cell cultures and its early adoption in cancer research to test antitumor immune response and set up new immunotherapy strategies.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Citometria de Fluxo/métodos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Esferoides Celulares/patologia , Técnicas de Cultura de Células/métodos , Proliferação de Células , Sobrevivência Celular , Técnica Indireta de Fluorescência para Anticorpo/métodos , Células HT29 , Humanos , Microfluídica/métodos
15.
Front Immunol ; 10: 961, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130953

RESUMO

It is well established that natural killer (NK) cells are involved in both innate and adaptive immunity. Indeed, they can recognize molecules induced at the cell surface by stress signals and virus infections. The functions of NK cells in the gut are much more complex. Gut NK cells are not precisely organized in lymphoid aggregates but rather scattered in the epithelium or in the stroma, where they come in contact with a multitude of antigens derived from commensal or pathogenic microorganisms in addition to components of microbiota. Furthermore, NK cells in the bowel interact with several cell types, including epithelial cells, fibroblasts, macrophages, dendritic cells, and T lymphocytes, and contribute to the maintenance of immune homeostasis and development of efficient immune responses. NK cells have a key role in the response to intestinal bacterial infections, primarily through production of IFNγ, which can stimulate recruitment of additional NK cells from peripheral blood leading to amplification of the anti-bacterial immune response. Additionally, NK cells can have a role in the pathogenesis of gut autoimmune inflammatory bowel diseases (IBDs), such as Crohn's Disease and Ulcerative Colitis. These diseases are considered relevant to the generation of gastrointestinal malignancies. Indeed, the role of gut-associated NK cells in the immune response to bowel cancers is known. Thus, in the gut immune system, NK cells play a dual role, participating in both physiological and pathogenic processes. In this review, we will analyze the known functions of NK cells in the gut mucosa both in health and disease, focusing on the cross-talk among bowel microenvironment, epithelial barrier integrity, microbiota, and NK cells.


Assuntos
Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Células Matadoras Naturais/imunologia , Animais , Neoplasias Colorretais/imunologia , Microbioma Gastrointestinal , Humanos , Doenças Inflamatórias Intestinais/imunologia , Intestino Grosso/imunologia , Intestino Delgado/imunologia
16.
ChemMedChem ; 14(6): 686-698, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30600908

RESUMO

Selective and potent matrix metalloproteinase 12 (MMP-12) inhibitors endowed with improved hydrophilicity are highly sought for potential use in the treatment of lung and cardiovascular diseases. In the present paper, we modified the structure of a nanomolar MMP-12 inhibitor by incorporating an ionic liquid (IL) moiety to improve aqueous solubility. Four biologically active salts were obtained by linking the sulfonamide moiety of the MMP-12 inhibitor to imidazolium-, pyrrolidinium-, piperidinium-, and DABCO-based ILs. The imidazolium-based bioactive salt was tested on human recombinant MMPs and on monocyte-derived dendritic cells, showing activity similar to that of the parent compound, but improved water solubility. The imidazolium-based bioactive salt was then used to prepare electrostatically stabilized MMP inhibitor-coated gold nanoparticles (AuNPs) able to selectively bind MMP-12. These AuNPs were used to study subcellular localization of MMP-12 in monocyte-derived dendritic cells by transmission electron microscopy analysis.


Assuntos
Ouro/química , Líquidos Iônicos , Inibidores de Metaloproteinases de Matriz/farmacologia , Nanopartículas Metálicas/química , Interações Hidrofóbicas e Hidrofílicas
17.
Cancers (Basel) ; 12(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906080

RESUMO

Aminobisphosphonates, such as zoledronic acid (ZA), have shown potential in the treatment of different malignancies, including colorectal carcinoma (CRC). Yet, their clinical exploitation is limited by their high bone affinity and modest bioavailability. Here, ZA is encapsulated into the aqueous core of spherical polymeric nanoparticles (SPNs), whose size and architecture resemble that of biological vesicles. On Vδ2 T cells, derived from the peripheral blood of healthy donors and CRC patients, ZA-SPNs induce proliferation and trigger activation up to three orders of magnitude more efficiently than soluble ZA. These activated Vδ2 T cells kill CRC cells and tumor spheroids, and are able to migrate toward CRC cells in a microfluidic system. Notably, ZA-SPNs can also stimulate the proliferation of Vδ2 T cells from the tumor-infiltrating lymphocytes of CRC patients and boost their cytotoxic activity against patients' autologous tumor organoids. These data represent a first step toward the use of nanoformulated ZA for immunotherapy in CRC patients.

18.
ChemMedChem ; 13(19): 2119-2131, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102846

RESUMO

A disintegrin and metalloproteinase (ADAMs) are membrane-bound metalloproteases responsible for the ectodomain shedding of various transmembrane proteins and play important roles in multiple relevant biological processes. Their altered expression is involved in several pathological conditions, and in particular ADAM10 or ADAM17 overexpression is found in various forms of cancer. To better understand how they are regulated in the cellular context, it is useful to visualize the specific ADAMs pathway by means of molecular imaging techniques. For this purpose, we synthesized bioactive fluorescent probes suitable for cell imaging and that are able to specifically target ADAM10 or ADAM17. Two previously developed ADAM17- and ADAM10-selective inhibitors were chosen for conjugation, respectively, to a Cy5.5 dye and to Cy5.5 and FITC dyes. Herein we also report the synthesis of a gold-labeled compound as an additional bioimaging probe for ADAM10. The newly synthesized ligands were found to be active in vitro on human recombinant ADAM10 and/or ADAM17, showing IC50 values in the nanomolar range and a good selectivity over matrix metalloproteinases (MMPs). Finally, these newly developed probes were successfully used for ADAMs staining on different lymphoma cell lines and lymph node mesenchymal stromal cells.


Assuntos
Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/farmacologia , Proteínas de Membrana/metabolismo , Proteína ADAM10/antagonistas & inibidores , Proteína ADAM17/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Antígenos CD/metabolismo , Carbocianinas/química , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Proteínas Fetais/metabolismo , Fluoresceína-5-Isotiocianato/química , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Proteínas de Membrana/antagonistas & inibidores , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Compostos Organoáuricos/síntese química , Compostos Organoáuricos/química , Compostos Organoáuricos/metabolismo , Compostos Organoáuricos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
19.
Front Immunol ; 9: 998, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867975

RESUMO

New successful anti-cancer strategies are based on the stimulation of immune reaction against tumors: however, preclinical testing of such treatments is still a challenge. To improve the screening of anti-cancer drugs, three-dimensional (3D) culture systems, including spheroids, have been validated as preclinical models. We propose the spheroid 3D system to test anti-tumor drug-induced immune responses. We show that colorectal carcinoma (CRC) spheroids, generated with the epithelial growth factor (EGF), can be co-cultured with Vδ2 T cells to evaluate the anti-tumor activity of these effector lymphocytes. By computerized image analysis, the precise and unbiased measure of perimeters and areas of tumor spheroids is achievable, beside the calculation of their volume. CRC spheroid size is related to ATP content and cell number, as parameters for cell metabolism and proliferation; in turn, crystal violet staining can check the viability of cells inside the spheroids to detect tumor killing by Vδ2 T cells. In this 3D cultures, we tested (a) zoledronate that is known to activate Vδ2 T cells and (b) the therapeutic anti-EGF receptor humanized antibody cetuximab that can elicit the antibody-dependent cytotoxicity of tumor cells by effector lymphocytes. Zoledronate triggers Vδ2 T cells to kill and degrade CRC spheroids; we detected the T-cell receptor dependency of zoledronate effect, conceivably due to the recognition of phosphoantigens produced as a drug effect on target cell metabolism. In addition, cetuximab triggered Vδ2 T lymphocytes to exert the antibody-dependent cellular cytotoxicity of CRC spheroids. Finally, the system reveals differences in the sensitivity of CRC cell lines to the action of Vδ2 T lymphocytes and in the efficiency of anti-tumor effectors from distinct donors. A limitation of this model is the absence of cells, including fibroblasts, that compose tumor microenvironment and influence drug response. Nevertheless, the system can be improved by setting mixed spheroids, made of stromal and cancer cells. We conclude that this type of spheroid 3D culture is a feasible and reliable system to evaluate and measure anti-tumor drug-induced immune responses beside direct anti-cancer drug effect.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Citotoxicidade Imunológica , Esferoides Celulares/efeitos dos fármacos , Linfócitos T/imunologia , Ácido Zoledrônico/farmacologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Neoplasias do Colo/tratamento farmacológico , Humanos , Processamento de Imagem Assistida por Computador , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Esferoides Celulares/imunologia , Células Tumorais Cultivadas , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...