Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 380(2216): 20210064, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34923836

RESUMO

The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more 'accessible' and easier to manipulate for experimentalists, but this 'substitution' also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or [Formula: see text] Bose-Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz-Hubbard ladder, or Gross-Neveu-Wilson and Wilson-Hubbard models. This article is not a general review of the rapidly growing field-it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue 'Quantum technologies in particle physics'.

2.
Philos Trans A Math Phys Eng Sci ; 380(2216): 20210069, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34923840

RESUMO

Over recent years, the relatively young field of quantum simulation of lattice gauge theories, aiming at implementing simulators of gauge theories with quantum platforms, has gone through a rapid development process. Nowadays, it is not only of interest to the quantum information and technology communities. It is also seen as a valid tool for tackling hard, non-perturbative gauge theory problems by particle and nuclear physicists. Along the theoretical progress, nowadays more and more experiments implementing such simulators are being reported, manifesting beautiful results, but mostly on [Formula: see text] dimensional physics. In this article, we review the essential ingredients and requirements of lattice gauge theories in more dimensions and discuss their meanings, the challenges they pose and how they could be dealt with, potentially aiming at the next steps of this field towards simulating challenging physical problems in analogue, or analogue-digital ways. This article is part of the theme issue 'Quantum technologies in particle physics'.

3.
Philos Trans A Math Phys Eng Sci ; 380(2216): 20210072, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34923846
4.
Phys Rev Lett ; 127(25): 250501, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35029424

RESUMO

Quantum simulation of lattice gauge theories, aiming at tackling nonperturbative particle and condensed matter physics, has recently received a lot of interest and attention, resulting in many theoretical proposals as well as several experimental implementations. One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear. In this Letter, we propose a method to obtain them based on a combination of stroboscopic optical atomic control and the nonlocal photon-mediated interactions appearing in nanophotonic or cavity QED setups. We illustrate the method for a Z_{2} lattice gauge theory. We also show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.

5.
Phys Rev Lett ; 118(7): 070501, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28256852

RESUMO

We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.

6.
Nature ; 534(7608): 480-1, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27337336
7.
Rep Prog Phys ; 79(1): 014401, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26684222

RESUMO

Can high-energy physics be simulated by low-energy, non-relativistic, many-body systems such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure an atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective low-energy symmetry, or as an exact symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to a new type of (table-top) experiments which will be used to study various QCD (quantum chromodynamics) phenomena, such as the confinement of dynamical quarks, phase transitions and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing the quantum simulation of Abelian and non-Abelian lattice gauge theories in 1 + 1 and 2 + 1 dimensions using ultracold atoms in optical lattices.

8.
Phys Rev Lett ; 110(5): 055302, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23414028

RESUMO

We suggest a method to simulate compact quantum electrodynamics using ultracold atoms in optical lattices, which includes dynamical Dirac fermions in 2+1 dimensions. This allows us to test the dynamical effects of confinement as well as the deformations and breaking of two-dimensional flux loops, and to observe the Wilson-loop area law.

9.
Phys Rev Lett ; 110(12): 125304, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166817

RESUMO

Non-Abelian gauge theories play an important role in the standard model of particle physics, and unfold a partially unexplored world of exciting physical phenomena. In this Letter, we suggest a realization of a non-Abelian lattice gauge theory-SU(2) Yang-Mills in (1 + 1) dimensions, using ultracold atoms. Remarkably, and in contrast to previous proposals, in our model gauge invariance is a direct consequence of angular momentum conservation and thus is fundamental and robust. Our proposal may serve as well as a starting point for higher-dimensional realizations.

10.
Phys Rev Lett ; 109(12): 125302, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005955

RESUMO

Recently, there has been much interest in simulating quantum field theory effects of matter and gauge fields. In a recent work, a method for simulating compact quantum electrodynamics (CQED) using Bose-Einstein condensates has been suggested. We suggest an alternative approach, which relies on single atoms in an optical lattice, carrying 2l + 1 internal levels, which converges rapidly to CQED as l increases. That enables the simulation of CQED in 2 + 1 dimensions in both the weak and the strong coupling regimes, hence, allowing us to probe confinement as well as other nonperturbative effects of the theory. We provide an explicit construction for the case l = 1 which is sufficient for simulating the effect of confinement between two external static charges.

11.
Phys Rev Lett ; 107(27): 275301, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22243314

RESUMO

We propose a method for simulating (2+1)D compact lattice quantum-electrodynamics, using ultracold atoms in optical lattices. In our model local Bose-Einstein condensates' (BECs) phases correspond to the electromagnetic vector potential, and the local number operators represent the conjugate electric field. The well-known gauge-invariant Kogut-Susskind Hamiltonian is obtained as an effective low-energy theory. The field is then coupled to external static charges. We show that in the strong coupling limit this gives rise to "electric flux tubes" and to confinement. This can be observed by measuring the local density deviations of the BECs, and is expected to hold even, to some extent, outside the perturbative calculable regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...