Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 249: 121015, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103440

RESUMO

A new concept is presented for eliminating off-flavor from cold-water RAS-grown fish, while feeding, and as a part of the normal grow-out period. The technology is based on disconnecting the nitrification biofilter, and instead passing the water through an electrolysis system, which both oxidizes the ammonia and disinfects the water, while also removing the off-flavor compounds from the water, which thereby results in the purging of the fish. The purging period was expected to last up to 2 weeks and the fish are fed throughout it. Laboratory and pilot plant experiments were performed to prove the new concept. Lab experiments included quantification of the removal of MIB and geosmin by electrooxidation and stripping, together and separately, in the presence and absence of organic matter. A pilot plant experiment was performed using Rainbow trout to determine the rate at which the off-flavor compounds were removed from the water and the fish flesh (both skin and muscle were tested). The results show that the treatment process eliminated off-flavors in the water after ∼7 days and that the fish were below taste and odor threshold for geosmin and MIB after a maximum of 11 days. Detachment from the biofilter and the fact that the water was vigorously disinfected during the electrooxidation step guaranteed that no further off-flavor compounds would be generated during the operation. Aquacultural-management assessment indicates that RAS farms can increase both their annual production and their income by more than 10%, by implementing the suggested concept as part of the grow-out period.


Assuntos
Canfanos , Água , Animais , Naftóis , Peixes , Odorantes/prevenção & controle
2.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628411

RESUMO

The hypophysiotropic gonadotropin-releasing hormone (GnRH) and its neurons are crucial for vertebrate reproduction, primarily in regulating luteinizing hormone (LH) secretion and ovulation. However, in zebrafish, which lack GnRH1, and instead possess GnRH3 as the hypophysiotropic form, GnRH3 gene knockout did not affect reproduction. However, early-stage ablation of all GnRH3 neurons causes infertility in females, implicating GnRH3 neurons, rather than GnRH3 peptides in female reproduction. To determine the role of GnRH3 neurons in the reproduction of adult females, a Tg(gnrh3:Gal4ff; UAS:nfsb-mCherry) line was generated to facilitate a chemogenetic conditional ablation of GnRH3 neurons. Following ablation, there was a reduction of preoptic area GnRH3 neurons by an average of 85.3%, which was associated with reduced pituitary projections and gnrh3 mRNA levels. However, plasma LH levels were unaffected, and the ablated females displayed normal reproductive capacity. There was no correlation between the number of remaining GnRH3 neurons and reproductive performance. Though it is possible that the few remaining GnRH3 neurons can still induce an LH surge, our findings are consistent with the idea that GnRH and its neurons are likely dispensable for LH surge in zebrafish. Altogether, our results resurrected questions regarding the functional homology of the hypophysiotropic GnRH1 and GnRH3 in controlling ovulation.


Assuntos
Hormônio Liberador de Gonadotropina , Peixe-Zebra , Animais , Feminino , Fertilidade/genética , Hormônio Liberador de Gonadotropina/genética , Neurônios/fisiologia , Reprodução/genética , Peixe-Zebra/genética
3.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34978328

RESUMO

Vasoactive intestinal peptide (Vip) regulates luteinizing hormone (LH) release through the direct regulation of gonadotropin-releasing hormone (GnRH) neurons at the level of the brain in female rodents. However, little is known regarding the roles of Vip in teleost reproduction. Although GnRH is critical for fertility through the regulation of LH secretion in vertebrates, the exact role of the hypophysiotropic GnRH (GnRH3) in zebrafish is unclear since GnRH3 null fish are reproductively fertile. This phenomenon raises the possibility of a redundant regulatory pathway(s) for LH secretion in zebrafish. Here, we demonstrate that VipA (homologues of mammalian Vip) both inhibits and induces LH secretion in zebrafish. Despite the observation that VipA axons may reach the pituitary proximal pars distalis including LH cells, pituitary incubation with VipA in vitro, and intraperitoneal injection of VipA, did not induce LH secretion and lhß mRNA expression in sexually mature females, respectively. On the other hand, intracerebroventricular administration of VipA augmented plasma LH levels in both wild-type and gnrh3-/- females at 1 hour posttreatment, with no observed changes in pituitary GnRH2 and GnRH3 contents and gnrh3 mRNA levels in the brains. While VipA's manner of inhibition of LH secretion has yet to be explored, the stimulation seems to occur via a different pathway than GnRH3, dopamine, and 17ß-estradiol in regulating LH secretion. The results indicate that VipA induces LH release possibly by acting with or through a non-GnRH factor(s), providing proof for the existence of functional redundancy of LH release in sexually mature female zebrafish.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Hormônio Luteinizante/metabolismo , Hipófise/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Peptídeo Intestinal Vasoativo/fisiologia , Peixe-Zebra , Animais , Anticorpos/farmacologia , Química Encefálica , Feminino , Técnicas de Inativação de Genes , Hormônio Liberador de Gonadotropina/análise , Hormônio Liberador de Gonadotropina/genética , Hormônio Luteinizante/sangue , Hormônio Luteinizante Subunidade beta/genética , Hipófise/química , Ácido Pirrolidonocarboxílico/análise , RNA Mensageiro/análise , Peptídeo Intestinal Vasoativo/administração & dosagem , Peptídeo Intestinal Vasoativo/genética
4.
J Neuroendocrinol ; 34(5): e13069, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34913529

RESUMO

The field of fish gonadotropin-releasing hormones (GnRHs) is also celebrating its 50th anniversary this year. This review provides a chronological history of fish GnRH biology over the past five decades. It demonstrates how discoveries in fish regarding GnRH and GnRH receptor multiplicity, dynamic interactions between GnRH neurons, and additional neuroendocrine factors acting alongside GnRH, amongst others, have driven a paradigm shift in our understanding of GnRH systems and functions in vertebrates, including mammals. The role of technological innovations in enabling scientific discoveries is portrayed, as well as how fundamental research in fish GnRH led to translational outcomes in aquaculture. The interchange between fish and mammalian GnRH research is discussed, as is the value and utility of using fish models for advancing GnRH biology. Current challenges and future perspectives are presented, with the hope of expanding the dialogue and collaborations within the neuroendocrinology scientific community at large, capitalizing on diversifying model animals and the use of comparative strategies.


Assuntos
Hormônio Liberador de Gonadotropina , Neuroendocrinologia , Animais , Hormônio Liberador de Gonadotropina/fisiologia , Gonadotropinas , Mamíferos , Sistemas Neurossecretores
5.
Sci Rep ; 11(1): 6657, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758252

RESUMO

Restricted food intake, either from lack of food sources or endogenous fasting, during reproductive periods is a widespread phenomenon across the animal kingdom. Considering previous studies show the canonical upstream regulator of reproduction in vertebrates, the hypothalamic Gonadotropin-releasing hormone (Gnrh), is inhibited in some fasting animals, we sought to understand the neuroendocrine control of reproduction in fasted states. Here, we explore the roles of the midbrain neuropeptide, Gnrh2, in inducing reproduction via its pituitary prevalence, gonadotropin synthesis, gametogenesis, and reproductive outputs in the zebrafish model undergoing different feeding regimes. We discovered a fasting-induced four-fold increase in length and abundance of Gnrh2 neuronal projections to the pituitary and in close proximity to gonadotropes, whereas the hypothalamic Gnrh3 neurons are reduced by six-fold in length. Subsequently, we analyzed the functional roles of Gnrh2 by comparing reproductive parameters of a Gnrh2-depleted model, gnrh2-/-, to wild-type zebrafish undergoing different feeding conditions. We found that Gnrh2 depletion in fasted states compromises spawning success, with associated decreases in gonadotropin production, oogenesis, fecundity, and male courting behavior. Gnrh2 neurons do not compensate in other circumstances by which Gnrh3 is depleted, such as in gnrh3-/- zebrafish, implying that Gnrh2 acts to induce reproduction specifically in fasted zebrafish.


Assuntos
Jejum/metabolismo , Hormônio Liberador de Gonadotropina/análogos & derivados , Gonadotropinas/biossíntese , Neurônios/metabolismo , Oogênese , Reprodução , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Neuritos/metabolismo , Hipófise/metabolismo , Reprodução/fisiologia
6.
Gen Comp Endocrinol ; 300: 113544, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615136

RESUMO

Driven by the broad diversity of species and physiologies and by reproduction-related bottlenecks in aquaculture, the field of fish reproductive biology has rapidly grown over the last five decades. This review provides my perspective on the field during this period, integrating fundamental and applied developments and milestones. Our basic understanding of the brain-pituitary-gonadal axis led to overcoming the failure of farmed fish to ovulate and spawn in captivity, allowing us to close the fish life cycle and establish a predictable, year-round production of eggs. Dissecting the molecular and hormonal mechanisms associated with sex determination and differentiation drove technologies for producing better performing mono-sex and reproductively-sterile fish. The growing contingent of passionate fish biologists, together with the availability of innovative platforms such as transgenesis and gene editing, as well as new models such as the zebrafish and medaka, have generated many discoveries, also leading to new insights of reproductive biology in higher vertebrates including humans. Consequently, fish have now been widely accepted as vertebrate reproductive models. Perhaps the best testament of the progress in our discipline is demonstrated at the International Symposia on Reproductive Physiology of Fish (ISRPF), at which our scientific family has convened every four years since the grandfather of the field, the late Ronald Billard, organized the inaugural 1977 meeting in Paimpont, France. As the one person who has been fortunate enough to attend all of these meetings since their inception, I have witnessed first-hand the astounding evolution of our field as we capitalized on the molecular and biotechnological revolutions in the life sciences, which enabled us to provide a higher resolution of fish reproductive and endocrine processes, answer more questions, and dive into deeper comprehension. Undoubtedly, the next (five) decades will be similarly exciting as we continue to integrate physiology with genomics, basic and translational research, and the small fish models with the aquacultured species.


Assuntos
Peixes/fisiologia , Reprodução/fisiologia , Pesquisa Translacional Biomédica , Animais , Aquicultura , Hormônio Liberador de Gonadotropina/metabolismo , Modelos Animais
7.
Gen Comp Endocrinol ; 291: 113422, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32032603

RESUMO

Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.


Assuntos
Peixes/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Animais , Encéfalo/metabolismo , Peixes/genética , Peixes/crescimento & desenvolvimento , Genoma , Hormônio Liberador de Gonadotropina/química , Sistemas Neurossecretores/metabolismo , Receptores LHRH/química , Receptores LHRH/metabolismo
8.
Curr Biol ; 29(12): 2009-2019.e7, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31178320

RESUMO

Agouti-related protein (AgRP) is a hypothalamic regulator of food consumption in mammals. However, AgRP has also been detected in circulation, but a possible endocrine role has not been examined. Zebrafish possess two agrp genes: hypothalamically expressed agrp1, considered functionally equivalent to the single mammalian agrp, and agrp2, which is expressed in pre-optic neurons and uncharacterized pineal gland cells and whose function is not well understood. By ablation of AgRP1-expressing neurons and knockout of the agrp1 gene, we show that AgRP1 stimulates food consumption in the zebrafish larvae. Single-cell sequencing of pineal agrp2-expressing cells revealed molecular resemblance to retinal-pigment epithelium cells, and anatomic analysis shows that these cells secrete peptides, possibly into the cerebrospinal fluid. Additionally, based on AgRP2 peptide localization and gene knockout analysis, we demonstrate that pre-optic AgRP2 is a neuroendocrine regulator of the stress axis that reduces cortisol secretion. We therefore suggest that the ancestral role of AgRP was functionally partitioned in zebrafish by the two AgRPs, with AgRP1 centrally regulating food consumption and AgRP2 acting as a neuroendocrine factor regulating the stress axis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Estresse Fisiológico/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Técnicas de Inativação de Genes , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glândula Pineal/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Biol Reprod ; 99(3): 565-577, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635430

RESUMO

Gonadotropin-releasing hormone (GNRH) is known as a pivotal upstream regulator of reproduction in vertebrates. However, reproduction is not compromised in the hypophysiotropic Gnrh3 knockout line in zebrafish (gnrh3-/-). In order to determine if Gnrh2, the only other Gnrh isoform in zebrafish brains, is compensating for the loss of Gnrh3, we generated a double Gnrh knockout zebrafish line. Surprisingly, the loss of both Gnrh isoforms resulted in no major impact on reproduction, indicating that a compensatory response, outside of the Gnrh system, was evoked. A plethora of factors acting along the reproductive hypothalamus-pituitary axis were evaluated as possible compensators based on neuroanatomical and differential gene expression studies. In addition, we also examined the involvement of feeding factors in the brain as potential compensators for Gnrh2, which has known anorexigenic effects. We found that the double knockout fish exhibited upregulation of several genes in the brain, specifically gonadotropin-inhibitory hormone (gnih), secretogranin 2 (scg2), tachykinin 3a (tac3a), and pituitary adenylate cyclase-activating peptide 1 (pacap1), and downregulation of agouti-related peptide 1 (agrp1), indicating the compensation occurs outside of Gnrh cells and therefore is a noncell autonomous response to the loss of Gnrh. While the differential expression of gnih and agrp1 in the double knockout line was confined to the periventricular nucleus and hypothalamus, respectively, the upregulation of scg2 corresponded with a broader neuronal redistribution in the lateral hypothalamus and hindbrain. In conclusion, our results demonstrate the existence of a redundant reproductive regulatory system that comes into play when Gnrh2 and Gnrh3 are lost.


Assuntos
Técnicas de Silenciamento de Genes/veterinária , Hormônio Liberador de Gonadotropina/genética , Neuropeptídeos/administração & dosagem , Reprodução/fisiologia , Peixe-Zebra/genética , Proteína Relacionada com Agouti/genética , Animais , Encéfalo/metabolismo , Regulação para Baixo , Feminino , Hormônio Liberador de Gonadotropina/deficiência , Hormônio Liberador de Gonadotropina/fisiologia , Hormônios Hipotalâmicos/genética , Hipotálamo/fisiologia , Masculino , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Hipófise/fisiologia , Secretogranina II/genética , Taquicininas/genética , Regulação para Cima , Peixe-Zebra/fisiologia
10.
Biol Reprod ; 96(5): 1031-1042, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430864

RESUMO

Gonadotropin-inhibitory hormone (GNIH) was discovered in quail with the ability to reduce gonadotropin expression/secretion in the pituitary. There have been few studies on GNIH orthologs in teleosts (LPXRFamide (Lpxrfa) peptides), which have provided inconsistent results. Therefore, the goal of this study was to determine the roles and modes of action by which Lpxrfa exerts its functions in the brain-pituitary axis of zebrafish (Danio rerio). We localized Lpxrfa soma to the ventral hypothalamus, with fibers extending throughout the brain and to the pituitary. In the preoptic area, Lpxrfa fibers interact with gonadotropin-releasing hormone 3 (Gnrh3) soma. In pituitary explants, zebrafish peptide Lpxrfa-3 downregulated luteinizing hormone beta subunit and common alpha subunit expression. In addition, Lpxrfa-3 reduced gnrh3 expression in brain slices, offering another pathway for Lpxrfa to exert its effects on reproduction. Receptor activation studies, in a heterologous cell-based system, revealed that all three zebrafish Lpxrfa peptides activate Lpxrf-R2 and Lpxrf-R3 via the PKA/cAMP pathway. Receptor activation studies demonstrated that, in addition to activating Lpxrf receptors, zebrafish Lpxrfa-2 and Lpxrfa-3 antagonize Kisspeptin-2 (Kiss2) activation of Kisspeptin receptor-1a (Kiss1ra). The fact that kiss1ra-expressing neurons in the preoptic area are innervated by Lpxrfa-ir fibers suggests an additional pathway for Lpxrfa action. Therefore, our results suggest that Lpxrfa may act as a reproductive inhibitory neuropeptide in the zebrafish that interacts with Gnrh3 neurons in the brain and with gonadotropes in the pituitary, while also potentially utilizing the Kiss2/Kiss1ra pathway.


Assuntos
Encéfalo/fisiologia , Gonadotropinas/fisiologia , Hormônios Hipotalâmicos/fisiologia , Hipófise/fisiologia , Reprodução/fisiologia , Peixe-Zebra/fisiologia , Animais , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/fisiologia , Gonadotropinas/genética , Hormônios Hipotalâmicos/genética , Reprodução/genética
11.
J Endocrinol ; 233(2): 159-174, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28330973

RESUMO

Kisspeptin and neurokinin B (NKB) are neuropeptides co-expressed in the mammalian hypothalamus and coordinately control GnRH signaling. We have found that Nkb and kisspeptin neurons are distinct in the teleost, striped bass (STB) and capitalized on this phenomenon to study the mode of action of Nkb and its related neuropeptide-F (Nkf), both of which are encoded by the tac3 gene. In vitro brain slices and in vivo administration studies revealed that Nkb/f consistently downregulated kiss2, whereas antagonist (AntD) administration restored this effect. Overall, a minor effect was noted on gnrh1 expression, whereas Gnrh1 content in the pituitaries was reduced after Nkb/f treatment and increased with AntD. Concomitantly, immunostaining demonstrated that hypothalamic Nkb neurons border and densely innervate the largest kiss2 neuronal population in the hypothalamus, which also coexpresses Nkb receptor. No expression of Nkb receptor or Nkb neuronal projections was detected near/in Gnrh1 soma in the preoptic area. At the level of the pituitary, however, the picture was more complex: both Nkb/f and AntD upregulated lhb and fshb expression and Lh secretion in vivo Together with the stimulatory effect of Nkb/f on Lh/Fsh secretion from pituitary cells, in vitro, this may indicate an additional independent action of Nkb/f within the pituitary, in which the hypothalamic pathway is more dominant. The current study demonstrates that Nkb/f utilizes multiple pathways to regulate reproduction in the STB and that in the brain, Nkb mainly acts as a negative modulator of kiss2 to regulate the release of Gnrh1.


Assuntos
Bass/metabolismo , Regulação da Expressão Gênica/fisiologia , Kisspeptinas/metabolismo , Neurocinina B/fisiologia , Reprodução/fisiologia , Animais , Clonagem Molecular , DNA Complementar/metabolismo , Kisspeptinas/antagonistas & inibidores , Kisspeptinas/genética , Masculino , Neurocinina B/genética , Hipófise/metabolismo
12.
Fish Physiol Biochem ; 43(3): 823-832, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28315977

RESUMO

Arginine vasotocin is a hormone produced in the hypothalamus of teleost fish that has been shown to regulate gonad development and sexual behavior. To study the role of arginine vasotocin in the gonadal cycle of the hermaphrodite gilthead seabream, Sparus aurata, we cloned the seabream arginine vasotocin (avt) complementary DNA (cDNA). We investigated the expression of brain avt throughout the gonad cycle using real-time quantitative PCR and compared its expression levels to the expression levels of two key gonadal steroidogenic enzymes, cyp19a1a and cyp11b2. In July, when the process of sex reversal is thought to begin, avt expression was elevated over the previous 2 months. Avt in the brain remained at or above the level of July until November then peaked again in December. There was no difference between males and females in the expression levels of brain avt throughout the year. However, only in ambisexual fish was the expression of the cyp19a1a gonadal aromatase correlated to the expression of avt in the brain. Cyp11b2 did not show any correlation to brain avt expression. We also found that females had more intense body coloration than males and that this intensity peaked prior to spawning. Avt expression and female coloration were positively correlated. The fact that brain avt expression was lowest during gonad quiescence, together with the observation of a correlation between brain avt with gonadal cyp19a1a and body coloration during that time suggests that avt may play a role during the process of sex reversal and spawning of the gilthead seabream.


Assuntos
Regulação da Expressão Gênica/fisiologia , Gônadas/fisiologia , RNA Mensageiro/metabolismo , Dourada/metabolismo , Estações do Ano , Vasotocina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Masculino , Pigmentos Biológicos , RNA Mensageiro/genética , Caracteres Sexuais , Vasotocina/genética
13.
PLoS One ; 11(6): e0158141, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27355207

RESUMO

Gnrh is the major neuropeptide regulator of vertebrate reproduction, triggering a cascade of events in the pituitary-gonadal axis that result in reproductive competence. Previous research in mice and humans has demonstrated that Gnrh/GNRH null mutations result in hypogonadotropic hypogonadism and infertility. The goal of this study was to eliminate gnrh3 (the hypophysiotropic Gnrh form) function in zebrafish (Danio rerio) to determine how ontogeny and reproductive performance are affected, as well as factors downstream of Gnrh3 along the reproductive axis. Using the TALEN technology, we developed a gnrh3-/- zebrafish line that harbors a 62 bp deletion in the gnrh3 gene. Our gnrh3-/- zebrafish line represents the first targeted and heritable mutation of a Gnrh isoform in any organism. Using immunohistochemistry, we verified that gnrh3-/- fish do not possess Gnrh3 peptide in any regions of the brain. However, other than changes in mRNA levels of pituitary gonadotropin genes (fshb, lhb, and cga) during early development, which are corrected by adulthood, there were no changes in ontogeny and reproduction in gnrh3-/- fish. The gnrh3-/- zebrafish are fertile, displaying normal gametogenesis and reproductive performance in males and females. Together with our previous results that Gnrh3 cell ablation causes infertility, these results indicate that a compensatory mechanism is being activated, which is probably primed early on upon Gnrh3 neuron differentiation and possibly confined to Gnrh3 neurons. Potential compensation factors and sensitive windows of time for compensation during development and puberty should be explored.


Assuntos
Hormônio Liberador de Gonadotropina/genética , Mutagênese , Mutação , Ácido Pirrolidonocarboxílico/análogos & derivados , Reprodução , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Diferenciação Celular , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Hormônio Liberador de Gonadotropina/fisiologia , Hibridização In Situ , Masculino , Neurônios/metabolismo , RNA Mensageiro/metabolismo
15.
Sci Rep ; 6: 21102, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26879952

RESUMO

The olfactory hypothesis for salmon imprinting and homing to their natal stream is well known, but the endocrine hormonal control mechanisms of olfactory memory formation in juveniles and retrieval in adults remain unclear. In brains of hatchery-reared underyearling juvenile chum salmon (Oncorhynchus keta), thyrotropin-releasing hormone gene expression increased immediately after release from a hatchery into the natal stream, and the expression of the essential NR1 subunit of the N-methyl-D-aspartate receptor increased during downstream migration. Gene expression of salmon gonadotropin-releasing hormone (sGnRH) and NR1 increased in the adult chum salmon brain during homing from the Bering Sea to the natal hatchery. Thyroid hormone treatment in juveniles enhanced NR1 gene activation, and GnRHa treatment in adults improved stream odour discrimination. Olfactory memory formation during juvenile downstream migration and retrieval during adult homing migration of chum salmon might be controlled by endocrine hormones and could be clarified using NR1 as a molecular marker.


Assuntos
Comportamento de Retorno ao Território Vital , Hormônios/metabolismo , Percepção Olfatória , Oncorhynchus keta/fisiologia , Migração Animal , Animais , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônios/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Telencéfalo/fisiologia
16.
Sci Rep ; 5: 15822, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26510515

RESUMO

We developed a novel bath-immersion technology to produce large numbers of infertile fish. As seafood consumption shifts from fishery harvests towards artificially propagated species, optimization of aquaculture practices will be necessary to maximize food production and minimize ecological impact. Farming infertile fish is the most effective genetic-containment strategy to support the development of environmentally-responsible aquaculture. We discovered that a molecular transporter, Vivo, can effectively carry the Morpholino oligomer (MO) across the chorion, enter the embryo and reach target cells. Vivo-conjugated MO against zebrafish deadend (dnd-MO-Vivo) effectively caused primordial germ cell mis-migration and differentiation into somatic cells, which resulted in generation of infertile fish. Optimal conditions were achieved when embryos, immediately after fertilization, were immersed with dnd-MO-Vivo at the initial concentration of either 60 or 40 µM followed by a lower serially diluted concentration. Under these conditions, 100% induced sterility was achieved even when the total immersion time was reduced from 24 to 5 hours. In 8 independent experiments, 736 adults developed from these conditions were all found to be infertile fish that possessed minimally-developed gonads that lacked any gametes. The results demonstrate that dnd-MO-Vivo bath immersion is an effective strategy to produce infertile fish without introducing transgenic modifications.


Assuntos
Inativação Gênica , Infertilidade/induzido quimicamente , Infertilidade/embriologia , Morfolinos/farmacologia , Peixe-Zebra/embriologia , Animais , Feminino , Masculino
17.
Gen Comp Endocrinol ; 224: 247-59, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26261080

RESUMO

The aim of our study was to confirm the role of tidal pattern on the coordination of oocyte maturation and spawning in common snook Centropomus undecimalis. To do so, we studied oocyte maturation during the spawning season in relation to the tidal pattern in both males and females by means of histology and hormonal profiling along the pituitary-gonadal axis. Plasma LH levels, as well as transcript levels of gonadotropin genes (fshß and lhß) from the pituitaries of sexually mature male and female common snook were analyzed using a heterologous ELISA and quantitative RT-PCR, respectively. The fshß and lhß cDNAs were isolated and phylogenetic analysis of the deduced amino acid sequences revealed strong identity with other teleosts (75-90%). A strong link was found between tide and follicular development irrespective of the time of the day: female snook sampled on the rising tide were all found to have oocytes in the Secondary Growth Stage whereas females sampled at high tide or on the falling tide had oocytes in the later stages of maturation and ovulation. In addition, LH plasma and mRNA levels of fshß and lhß increased during the later stages of vitellogenesis peaking at ovulation in females. Plasma estradiol and testosterone significantly increased in late vitellogenesis (Secondary Growth Stage) and oocyte maturation (Eccentric Germinal Vesicle Step) respectively. Among male common snook sampled, no correlation was identified between tide and gonadal development. In addition, lhß mRNA expression in males peaked at the mid germinal epithelium stage as for testosterone and 11-KT in the blood while fshß expression and plasma LH levels peaked at late germinal epithelium stage. This study confirms the role played by tidal cycle on the entrainment of the later stages of oogenesis of common snook and provides a better understanding of the link between environmental and endocrine control of reproduction in this species.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/metabolismo , Hormônio Luteinizante Subunidade beta/metabolismo , Ovulação/fisiologia , Perciformes/metabolismo , Hipófise/metabolismo , Reprodução/fisiologia , Animais , Western Blotting , DNA Complementar/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Hormônio Luteinizante Subunidade beta/genética , Masculino , Oogênese/fisiologia , Perciformes/crescimento & desenvolvimento , Filogenia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vitelogênese/genética
18.
Endocrinology ; 156(11): 4163-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26261873

RESUMO

The function and components of the hypothalamic-pituitary axis are conserved among vertebrates; however, in fish, a neuroglandular mode of delivery (direct contact between axons and endocrine cells) was considered dominant, whereas in tetrapods hypothalamic signals are relayed to their targets via the hypophysial portal blood system (neurovascular delivery mode). By using a transgenic zebrafish model we studied the functional and anatomical aspects of gonadotrope regulation thus revisiting the existing model. FSH cells were found to be situated close to the vasculature whereas the compact organization of LH cells prevented direct contact of all cells with the circulation. GnRH3 fibers formed multiple boutons upon reaching the pituitary, but most of these structures were located in the neurohypophysis rather than adjacent to gonadotropes. A close association was observed between FSH cells and GnRH3 boutons, but only a fifth of the LH cells were in direct contact with GnRH3 axons, suggesting that FSH cells are more directly regulated than LH cells. GnRH3 fibers closely followed the vasculature in the neurohypophysis and formed numerous boutons along these tracts. These vessels were found to be permeable to relatively large molecules, suggesting the uptake of GnRH3 peptides. Our findings have important implications regarding the differential regulation of LH and FSH and contradict the accepted notion that fish pituitary cells are mostly regulated directly by hypothalamic fibers. Instead, we provide evidence that zebrafish apply a dual mode of gonadotrope regulation by GnRH3 that combines both neuroglandular and neurovascular components.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Gonadotrofos/citologia , Hormônio Luteinizante/metabolismo , Hipófise/irrigação sanguínea , Hipófise/citologia , Animais , Animais Geneticamente Modificados , Gonadotrofos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Hipófise/metabolismo , Peixe-Zebra
19.
Biol Reprod ; 93(3): 76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26246220

RESUMO

The importance of kisspeptin in regulating vertebrate reproduction has been well established, but the exact mechanism continues to unfold. Unlike mammals, many lower vertebrates possess a dual kisspeptin system, Kiss1 and Kiss2. To decipher the roles of the kisspeptins in fish, we identified two potential kisspeptin antagonists, pep 234 and pep 359, by screening analogs for their ability to inactivate striped bass Kiss1 and Kiss2 receptors expressed in COS7 cells. Pep 234 (a mammalian KISS1 antagonist) antagonizes Kiss1r signaling activated by Kiss1 and Kiss2, and pep 359 (a novel analog) antagonizes Kiss2 activation of both receptors. In vitro studies using brain slices demonstrated that only Kiss2 can upregulate the expression of the hypophysiotropic gnrh1, which was subsequently diminished by pep 234 and pep 359. In primary pituitary cell cultures, the two antagonists revealed a complex network of putative endogenous and exogenous regulation by kisspeptin. While both kisspeptins stimulate Fsh expression and secretion, Kiss2 predominately induces Lh secretion. Pep 234 and 359 treatment of spawning males hindered sperm production. This effect was accompanied with decreased brain gnrh1 and gnrh2 mRNA levels and peptide content in the pituitary, and increased levels of pituitary Lh, probably due to attenuation of Lh release. Strikingly, the mRNA levels of arginine-vasotocin, the neurons of which in the preoptic area coexpress kiss2r, were dramatically reduced by the antagonists. Our results demonstrate differential actions of Kiss1 and Kiss2 systems along the hypothalamic-pituitary axis and interactions with other neuropeptides, and further reinforce the importance of kisspeptin in the execution of spawning.


Assuntos
Bass/genética , Kisspeptinas/antagonistas & inibidores , Kisspeptinas/metabolismo , Reprodução/genética , Animais , Química Encefálica/genética , Células COS , Chlorocebus aethiops , Hormônio Liberador de Gonadotropina/biossíntese , Hormônio Liberador de Gonadotropina/genética , Humanos , Kisspeptinas/genética , Hormônio Luteinizante/metabolismo , Masculino , Neurônios/metabolismo , Hipófise/metabolismo , Cultura Primária de Células , RNA Mensageiro/biossíntese , Vasotocina/metabolismo
20.
Gen Comp Endocrinol ; 221: 1-2, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26143506
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...