Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 107(10): 4746-51, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20173092

RESUMO

To identify molecules that could enhance sweetness perception, we undertook the screening of a compound library using a cell-based assay for the human sweet taste receptor and a panel of selected sweeteners. In one of these screens we found a hit, SE-1, which significantly enhanced the activity of sucralose in the assay. At 50 microM, SE-1 increased the sucralose potency by >20-fold. On the other hand, SE-1 exhibited little or no agonist activity on its own. SE-1 effects were strikingly selective for sucralose. Other popular sweeteners such as aspartame, cyclamate, and saccharin were not enhanced by SE-1 whereas sucrose and neotame potency were increased only by 1.3- to 2.5-fold at 50 microM. Further assay-guided chemical optimization of the initial hit SE-1 led to the discovery of SE-2 and SE-3, selective enhancers of sucralose and sucrose, respectively. SE-2 (50 microM) and SE-3 (200 microM) increased sucralose and sucrose potencies in the assay by 24- and 4.7-fold, respectively. In human taste tests, 100 microM of SE-1 and SE-2 allowed for a reduction of 50% to >80% in the concentration of sucralose, respectively, while maintaining the sweetness intensity, and 100 microM SE-3 allowed for a reduction of 33% in the concentration of sucrose while maintaining the sweetness intensity. These enhancers did not exhibit any sweetness when tasted on their own. Positive allosteric modulators of the human sweet taste receptor could help reduce the caloric content in food and beverages while maintaining the desired taste.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Edulcorantes/farmacologia , Papilas Gustativas/efeitos dos fármacos , Paladar/efeitos dos fármacos , Regulação Alostérica , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Pirimidinas/química , Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/genética , Sacarose/administração & dosagem , Sacarose/análogos & derivados , Sacarose/química , Sacarose/farmacologia , Edulcorantes/administração & dosagem , Edulcorantes/química , Papilas Gustativas/metabolismo , Tiofenos/química , Tiofenos/farmacologia
2.
Proc Natl Acad Sci U S A ; 107(10): 4752-7, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20173095

RESUMO

Positive allosteric modulators of the human sweet taste receptor have been developed as a new way of reducing dietary sugar intake. Besides their potential health benefit, the sweet taste enhancers are also valuable tool molecules to study the general mechanism of positive allosteric modulations of T1R taste receptors. Using chimeric receptors, mutagenesis, and molecular modeling, we reveal how these sweet enhancers work at the molecular level. Our data argue that the sweet enhancers follow a similar mechanism as the natural umami taste enhancer molecules. Whereas the sweeteners bind to the hinge region and induce the closure of the Venus flytrap domain of T1R2, the enhancers bind close to the opening and further stabilize the closed and active conformation of the receptor.


Assuntos
Modelos Moleculares , Receptores Acoplados a Proteínas G/química , Edulcorantes/química , Regulação Alostérica , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Dados de Sequência Molecular , Mutação , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Homologia de Sequência de Aminoácidos , Sacarose/análogos & derivados , Sacarose/química , Sacarose/metabolismo , Edulcorantes/metabolismo , Edulcorantes/farmacologia , Transfecção
3.
PLoS One ; 4(12): e7682, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19997627

RESUMO

BACKGROUND: Using fungiform (FG) and circumvallate (CV) taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive), sour cells (PKD2L1-positive), as well as other taste cell populations. Transmembrane protein 44 (TMEM44), a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1), a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1), a calcium-binding transmembrane protein; and anoctamin 7 (ANO7), a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B), a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins expressed in primate taste buds provides new insights into the processes of taste cell development, signal transduction, and information coding. Discrete taste cell populations exhibit highly specific gene expression patterns, supporting a model whereby each mature taste receptor cell is responsible for sensing, transmitting, and coding a specific taste quality.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Primatas/genética , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo , Animais , Sinalização do Cálcio/genética , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Especificidade de Órgãos/genética , Transporte Proteico , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
4.
PLoS One ; 4(7): e6395, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19636377

RESUMO

Efforts to unravel the mechanisms underlying taste sensation (gustation) have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM) procured fungiform (FG) and circumvallate (CV) taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology.


Assuntos
Perfilação da Expressão Gênica , Genoma , Primatas/genética , Papilas Gustativas/metabolismo , Animais , Papilas Gustativas/fisiologia
5.
Proc Natl Acad Sci U S A ; 101(39): 14258-63, 2004 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-15353592

RESUMO

The T1R receptors, a family of taste-specific class C G protein-coupled receptors, mediate mammalian sweet and umami tastes. The structure-function relationships of T1R receptors remain largely unknown. In this study, we demonstrate the different functional roles of T1R extracellular and transmembrane domains in ligand recognition and G protein coupling. Similar to other family C G protein-coupled receptors, the N-terminal Venus flytrap domain of T1R2 is required for recognizing sweeteners, such as aspartame and neotame. The G protein coupling requires the transmembrane domain of T1R2. Surprisingly, the C-terminal transmembrane domain of T1R3 is required for recognizing sweetener cyclamate and sweet taste inhibitor lactisole. Because T1R3 is the common subunit in the sweet taste receptor and the umami taste receptor, we tested the interaction of lactisole and cyclamate with the umami taste receptor. Lactisole inhibits the activity of the human T1R1/T1R3 receptor, and, as predicted, blocked the umami taste of l-glutamate in human taste tests. Cyclamate does not activate the T1R1/T1R3 receptor by itself, but potentiates the receptor's response to l-glutamate. Taken together, these findings demonstrate the different functional roles of T1R3 and T1R2 and the presence of multiple ligand binding sites on the sweet taste receptor.


Assuntos
Subunidades Proteicas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Papilas Gustativas/fisiologia , Sequência de Aminoácidos , Animais , Aspartame/farmacologia , Derivados de Benzeno/farmacologia , Sítios de Ligação , Linhagem Celular , Ciclamatos/farmacologia , Relação Dose-Resposta a Droga , Aromatizantes/farmacologia , Glutamatos/farmacologia , Proteínas Heterotriméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Humanos , Dados de Sequência Molecular , Mutação Puntual , Estrutura Terciária de Proteína , Ratos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Glutamato de Sódio/farmacologia , Relação Estrutura-Atividade , Sacarose/farmacologia , Paladar/efeitos dos fármacos , Paladar/fisiologia , Transfecção
6.
Proc Natl Acad Sci U S A ; 99(7): 4692-6, 2002 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11917125

RESUMO

The three members of the T1R class of taste-specific G protein-coupled receptors have been hypothesized to function in combination as heterodimeric sweet taste receptors. Here we show that human T1R2/T1R3 recognizes diverse natural and synthetic sweeteners. In contrast, human T1R1/T1R3 responds to the umami taste stimulus l-glutamate, and this response is enhanced by 5'-ribonucleotides, a hallmark of umami taste. The ligand specificities of rat T1R2/T1R3 and T1R1/T1R3 correspond to those of their human counterparts. These findings implicate the T1Rs in umami taste and suggest that sweet and umami taste receptors share a common subunit.


Assuntos
Ácido Glutâmico/farmacologia , Receptores de Superfície Celular/fisiologia , Receptores Acoplados a Proteínas G , Paladar/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao GTP/fisiologia , Guanosina Monofosfato/farmacologia , Humanos , Inosina Monofosfato/farmacologia , Dados de Sequência Molecular , Ratos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA