Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37761029

RESUMO

Microtia is a congenital condition of abnormal development of the outer ear. Tissue engineering of the ear is an alternative treatment option for microtia patients. However, for this approach, the identification of high regenerative cartilage progenitor cells is of vital importance. Raman analysis provides a novel, non-invasive, label-free diagnostic tool to detect distinctive biochemical features of single cells or tissues. Using micro-Raman spectroscopy, we were able to distinguish and characterize the particular molecular fingerprints of differentiated chondrocytes and perichondrocytes and their respective progenitors isolated from healthy individuals and microtia patients. We found that microtia chondrocytes exhibited lower lipid concentrations in comparison to healthy cells, thus indicating the importance of fat storage. Moreover, we suggest that collagen is a useful biomarker for distinguishing between populations obtained from the cartilage and perichondrium because of the higher spectral contributions of collagen in the chondrocytes compared to perichondrocytes from healthy individuals and microtia patients. Our results represent a contribution to the identification of cell markers that may allow the selection of specific cell populations for cartilage tissue engineering. Moreover, the observed differences between microtia and healthy cells are essential for gaining better knowledge of the cause of microtia. It can be useful for designing novel treatment options based on further investigations of the discovered biochemical substrate alterations.

2.
J Chem Phys ; 159(10)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37694754

RESUMO

Cryptochrome 4a (Cry4a) has been proposed as the sensor at the heart of the magnetic compass in migratory songbirds. Blue-light excitation of this protein produces magnetically sensitive flavin-tryptophan radical pairs whose properties suggest that Cry4a could indeed be suitable as a magnetoreceptor. Here, we use cavity ring-down spectroscopy to measure magnetic field effects on the kinetics of these radical pairs in modified Cry4a proteins from the migratory European robin and from nonmigratory pigeon and chicken. B1/2, a parameter that characterizes the magnetic field-dependence of the reactions, was found to be larger than expected on the basis of hyperfine interactions and to increase with the delay between pump and probe laser pulses. Semiclassical spin dynamics simulations show that this behavior is consistent with a singlet-triplet dephasing (STD) relaxation mechanism. Analysis of the experimental data gives dephasing rate constants, rSTD, in the range 3-6 × 107 s-1. A simple "toy" model due to Maeda, Miura, and Arai [Mol. Phys. 104, 1779-1788 (2006)] is used to shed light on the origin of the time-dependence and the nature of the STD mechanism. Under the conditions of the experiments, STD results in an exponential approach to spin equilibrium at a rate considerably slower than rSTD. We attribute the loss of singlet-triplet coherence to electron hopping between the second and third tryptophans of the electron transfer chain and comment on whether this process could explain differences in the magnetic sensitivity of robin, chicken, and pigeon Cry4a's.


Assuntos
Proteínas Aviárias , Galinhas , Criptocromos , Animais , Galinhas/fisiologia , Criptocromos/química , Criptocromos/fisiologia , Campos Magnéticos , Migração Animal
3.
Nature ; 594(7864): 535-540, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34163056

RESUMO

Night-migratory songbirds are remarkably proficient navigators1. Flying alone and often over great distances, they use various directional cues including, crucially, a light-dependent magnetic compass2,3. The mechanism of this compass has been suggested to rely on the quantum spin dynamics of photoinduced radical pairs in cryptochrome flavoproteins located in the retinas of the birds4-7. Here we show that the photochemistry of cryptochrome 4 (CRY4) from the night-migratory European robin (Erithacus rubecula) is magnetically sensitive in vitro, and more so than CRY4 from two non-migratory bird species, chicken (Gallus gallus) and pigeon (Columba livia). Site-specific mutations of ErCRY4 reveal the roles of four successive flavin-tryptophan radical pairs in generating magnetic field effects and in stabilizing potential signalling states in a way that could enable sensing and signalling functions to be independently optimized in night-migratory birds.


Assuntos
Migração Animal , Criptocromos/genética , Campos Magnéticos , Aves Canoras , Animais , Proteínas Aviárias/genética , Galinhas , Columbidae , Retina
4.
J Am Chem Soc ; 140(28): 8705-8713, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29940116

RESUMO

It is a remarkable fact that ∼50 µT magnetic fields can alter the rates and yields of certain free-radical reactions and that such effects might be the basis of the light-dependent ability of migratory birds to sense the direction of the Earth's magnetic field. The most likely sensory molecule at the heart of this chemical compass is cryptochrome, a flavin-containing protein that undergoes intramolecular, blue-light-induced electron transfer to produce magnetically sensitive radical pairs. To learn more about the factors that control the magnetic sensitivity of cryptochromes, we have used a set of de novo designed protein maquettes that self-assemble as four-α-helical proteins incorporating a single tryptophan residue as an electron donor placed approximately 0.6, 1.1, or 1.7 nm away from a covalently attached riboflavin as chromophore and electron acceptor. Using a specifically developed form of cavity ring-down spectroscopy, we have characterized the photochemistry of these designed flavoprotein maquettes to determine the identities and kinetics of the transient radicals responsible for the magnetic field effects. Given the gross structural and dynamic differences from the natural proteins, it is remarkable that the maquettes show magnetic field effects that are so similar to those observed for cryptochromes.


Assuntos
Proteínas Aviárias/metabolismo , Aves/metabolismo , Criptocromos/metabolismo , Radicais Livres/metabolismo , Animais , Proteínas Aviárias/química , Criptocromos/química , Transporte de Elétrons , Radicais Livres/química , Luz , Campos Magnéticos , Modelos Moleculares , Processos Fotoquímicos , Conformação Proteica em alfa-Hélice
5.
J Am Chem Soc ; 138(51): 16584-16587, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27958724

RESUMO

Migratory birds use the Earth's magnetic field as a source of navigational information. This light-dependent magnetic compass is thought to be mediated by cryptochrome proteins in the retina. Upon light activation, electron transfer between the flavin adenine dinucleotide cofactor and tryptophan residues leads to the formation of a spin-correlated radical pair, whose subsequent fate is sensitive to external magnetic fields. To learn more about the functional requirements of this complex chemical compass, we have created a family of simplified, adaptable proteins-maquettes-that contain a single tryptophan residue at different distances from a covalently bound flavin. Despite the complete absence of structural resemblance to the native cryptochrome fold or sequence, the maquettes exhibit a strong magnetic field effect that rivals those observed in the natural proteins in vitro. These novel maquette designs offer unprecedented flexibility to explore the basic requirements for magnetic sensing in a protein environment.


Assuntos
Flavoproteínas/genética , Flavoproteínas/metabolismo , Campos Magnéticos , Engenharia de Proteínas , Flavoproteínas/química , Conformação Proteica em alfa-Hélice
6.
Chemphyschem ; 15(13): 2762-7, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25044352

RESUMO

An experiment on chiral molecules that combines circular dichroism (CD) spectroscopy, mass-selective detection by laser mass spectrometry (MS), and cooling of molecules by using a supersonic beam is presented. The combination of the former two techniques (CD-laser-MS) is a new method to investigate chiral molecules and is now used by several research groups. Cooling in a supersonic beam supplies a substantial increase in spectroscopic resolution, a feature that has not yet been used in CD spectroscopy. In the experiments reported herein, a large variation in the electronic CD of carbonyl 3-methylcyclopentanone was observed depending on the excited vibrational modes in the n → π* transition. This finding should be of interest for the detection of chiral molecules and for the theoretical understanding of the CD of vibronic bands. It is expected that this effect will show up in other chiral carbonyls because the n → π* transition is typical for the carbonyl group.


Assuntos
Temperatura Baixa , Ciclopentanos/química , Gases/química , Lasers , Luz , Dicroísmo Circular , Espectrometria de Massas , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...