Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(20): 206401, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829092

RESUMO

Coexisting orders are key features of strongly correlated materials and underlie many intriguing phenomena from unconventional superconductivity to topological orders. Here, we report the coexistence of two interacting charge-density-wave (CDW) orders in EuTe_{4}, a layered crystal that has drawn considerable attention owing to its anomalous thermal hysteresis and a semiconducting CDW state despite the absence of perfect Fermi surface nesting. By accessing unoccupied conduction bands with time- and angle-resolved photoemission measurements, we find that monolayers and bilayers of Te in the unit cell host different CDWs that are associated with distinct energy gaps. The two gaps display dichotomous evolutions following photoexcitation, where the larger bilayer CDW gap exhibits less renormalization and faster recovery. Surprisingly, the CDW in the Te monolayer displays an additional momentum-dependent gap renormalization that cannot be captured by density-functional theory calculations. This phenomenon is attributed to interlayer interactions between the two CDW orders, which account for the semiconducting nature of the equilibrium state. Our findings not only offer microscopic insights into the correlated ground state of EuTe_{4} but also provide a general nonequilibrium approach to understand coexisting, layer-dependent orders in a complex system.

2.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38416040

RESUMO

Solid-state high harmonic generation (sHHG) spectroscopy is a promising technique for studying electronic structure, symmetry, and dynamics in condensed matter systems. Here, we report on the implementation of an advanced sHHG spectrometer based on a vacuum chamber and closed-cycle helium cryostat. Using an in situ temperature probe, it is demonstrated that the sample interaction region retains cryogenic temperature during the application of high-intensity femtosecond laser pulses that generate high harmonics. The presented implementation opens the door for temperature-dependent sHHG measurements down to a few Kelvin, which makes sHHG spectroscopy a new tool for studying phases of matter that emerge at low temperatures, which is particularly interesting for highly correlated materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA