Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566130

RESUMO

Seed dormancy is an important life history state in which intact viable seeds delay or prevent germination under suitable conditions. Ascorbic acid (AsA) acts as a small molecule antioxidant, and breaking seed dormancy and promoting subsequent growth are among its numerous functions. In this study, a germination test using Pyrus betulifolia seeds treated with exogenous AsA or AsA synthesis inhibitor lycorine (Lyc) and water absorption was conducted. The results indicated that AsA released dormancy and increased germination and 20 mmol L-1 AsA promoted cell division, whereas Lyc reduced germination. Seed germination showed typical three phases of water absorption; and seeds at five key time points were sampled for transcriptome analysis. It revealed that multiple pathways were involved in breaking dormancy and promoting germination through transcriptome data, and 12 differentially expressed genes (DEGs) related to the metabolism and signal transduction of abscisic acid (ABA) and gibberellins (GA) were verified by subsequent RT-qPCR. For metabolites, exogenous AsA increased endogenous AsA and GA3 but reduced ABA and the ABA/GA3 ratio. In addition, three genes regulating ABA synthesis were downregulated by AsA, while five genes mediating ABA degradation were upregulated. Taken together, AsA regulates the pathways associated with ABA and GA synthesis, catalysis, and signal transduction, with subsequent reduction in ABA and increase in GA and further the balance of ABA/GA, ultimately releasing dormancy and promoting germination.


Assuntos
Giberelinas , Pyrus , Giberelinas/farmacologia , Giberelinas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Germinação , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Pyrus/metabolismo , Ácido Ascórbico/metabolismo , Dormência de Plantas/genética , Sementes , Água/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plants (Basel) ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679082

RESUMO

Subtilisin-like proteases (subtilases) are found in almost all plant species and are involved in regulating various biotic and abiotic stresses. Although the literature on subtilases in different plant species is vast, the gene function of the serine peptidase S8 family and its maize subfamily is still unknown. Here, a bioinformatics analysis of this gene family was conducted by describing gene structure, conserved motifs, phylogenetic relationships, chromosomal distributions, gene duplications, and promoter cis-elements. In total, we identified 18 ZmSPS8 genes in maize, distributed on 7 chromosomes, and half of them were hydrophilic. Most of these proteins were located at the cell wall and had similar secondary and tertiary structures. Prediction of cis-regulatory elements in promoters illustrated that they were mainly associated with hormones and abiotic stress. Maize inbred lines B73, Zheng58, and Qi319 were used to analyze the spatial-temporal expression patterns of ZmSPS8 genes under drought treatment. Seedling drought results showed that Qi319 had the highest percent survival after 14 d of withholding irrigation, while B73 was the lowest. Leaf relative water content (LRWC) declined more rapidly in B73 and to lower values, and the nitrotetrazolium blue chloride (NBT) contents of leaves were higher in Qi319 than in the other inbreds. The qPCR results indicated that 6 serine peptidase S8 family genes were positively or negatively correlated with plant tolerance to drought stress. Our study provides a detailed analysis of the ZmSPS8s in the maize genome and finds a link between drought tolerance and the family gene expression, which was established by using different maize inbred lines.

3.
Genes (Basel) ; 13(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35456369

RESUMO

Drought is one of the most critical environmental factors constraining maize production. When it occurs at the flowering stage, serious yield losses are caused, and often, the damage is irretrievable. In this study, anthesis to silk interval (ASI), plant height (PH), and ear biomass at the silking date (EBM) of 279 inbred lines were studied under both water-stress (WS) and well-water (WW) field conditions, for three consecutive years. Averagely, ASI was extended by 25.96%, EBM was decreased by 17.54%, and the PH was reduced by 12.47% under drought stress. Genome-wide association studies were carried out using phenotypic values under WS, WW, and drought-tolerance index (WS-WW or WS/WW) and applying a mixed linear model that controls both population structure and relative kinship. In total, 71, 159, and 21 SNPs, located in 32, 59, and 12 genes, were significantly (P < 10−5) associated with ASI, EBM, and PH, respectively. Only a few overlapped candidate genes were found to be associated with the same drought-related traits under different environments, for example, ARABIDILLO 1, glycoprotein, Tic22-like, and zinc-finger family protein for ASI; 26S proteasome non-ATPase and pyridoxal phosphate transferase for EBM; 11-ß-hydroxysteroid dehydrogenase, uncharacterised, Leu-rich repeat protein kinase, and SF16 protein for PH. Furthermore, most candidate genes were revealed to be drought-responsive in an association panel. Meanwhile, the favourable alleles/key variations were identified with a haplotype analysis. These candidate genes and their key variations provide insight into the genetic basis of drought tolerance, especially for the female inflorescence, and will facilitate drought-tolerant maize breeding.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Desidratação , Secas , Melhoramento Vegetal , Água , Zea mays/genética
4.
Plant Mol Biol ; 102(3): 339-357, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31894455

RESUMO

KEY MESSAGE: NCP1, a NINJA family protein lacking EAR motif, acts as a negative regulator of ABA signaling by interacting with and inhibiting the activity of transcriptional activator ABP9. The phytohormone abscisic acid plays a pivotal role in regulating plant responses to a variety of abiotic stresses including drought and salinity. Maize ABP9 is an ABRE-binding bZIP transcription activator that enhances plant tolerance to multiple stresses by positively regulating ABA signaling, but the molecular mechanism by which ABP9 is regulated in mediating ABA responses remains unknown. Here, we report the identification of an ABP9-interacting protein, named ABP Nine Complex Protein 1 (NCP1) and its functional characterization. NCP1 belongs to the recently identified NINJA family proteins, but lacks the conserved EAR motif, which is a hallmark of this class of transcriptional repressors. In vitro and in vivo assays confirmed that NCP1 physically interacts with ABP9 and that they are co-localized in the nucleus. In addition, NCP1 and ABP9 are similarly induced with similar patterns by ABA treatment and osmotic stress. Interestingly, NCP1 over-expressing Arabidopsis plants exhibited a reduced sensitivity to ABA and decreased drought tolerance. Transient assay in maize protoplasts showed that NCP1 inhibits the activity of ABP9 in activating ABRE-mediated reporter gene expression, a notion further supported by genetic analysis of drought and ABA responses in the transgenic plants over-expressing both ABP9 and NCP1. These data together suggest that NCP1 is a novel negative regulator of ABA signaling via interacting with and inhibiting the activity of ABP9.


Assuntos
Secas , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Pressão Osmótica , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Repressoras/metabolismo , Salinidade , Estresse Fisiológico , Fatores de Transcrição/genética , Transcriptoma , Zea mays/genética
5.
Plant J ; 98(1): 19-32, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30548709

RESUMO

In maize, kernel traits strongly impact overall grain yields, and it is known that sophisticated spatiotemporal programs of gene expression coordinate kernel development, so advancing our knowledge of kernel development can help efforts to improve grain yields. Here, using phenotype, genotype and transcriptomics data of maize kernels at 5 and 15 days after pollination (DAP) for a large association mapping panel, we employed multiple quantitative genetics approaches-genome-wide association studies (GWAS) as well as expression quantitative trait loci (eQTL) and quantitative trait transcript (QTT) analyses-to gain insights about molecular genetic basis of kernel development in maize. This resulted in the identification of 137 putative kernel length-related genes at 5 DAP, of which 43 are located in previously reported QTL regions. Strikingly, we identified an eQTL that overlaps the locus encoding a maize homolog of the recently described m6 A methylation reader protein ECT2 from Arabidopsis; this putative epi eQTL is associated with 53 genes and may represent a master epi-transcriptomic regulator of kernel development. Notably, among the genes associated with this epi eQTL, 10 are for the main storage proteins in the maize endosperm (zeins) and two are known regulators of zein expression or endosperm development (Opaque2 and ZmICE1). Collectively, beyond cataloging and characterizing genomic attributes of a large number of eQTL associated with kernel development in maize, our study highlights how an eQTL approach can bolster the impact of both GWAS and QTT studies and can drive insights about the basic biology of plants.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Zea mays/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Ontologia Genética , Genótipo , Modelos Lineares , Fenótipo , Filogenia , Zea mays/crescimento & desenvolvimento
6.
Biochem Biophys Res Commun ; 452(3): 503-8, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25173931

RESUMO

Reduction-oxidation-sensitive green fluorescent proteins (roGFPs) have been demonstrated to be valuable tools in sensing cellular redox changes in mammalian cells and model plants, yet have not been applied in crops such as maize. Here we report the characteristics of roGFP1 in transiently transformed maize mesophyll protoplasts in response to environmental stimuli and knocked-down expression of ROS-scavenging genes. We demonstrated that roGFP1 in maize cells ratiometrically responds to cellular redox changes caused by H2O2 and DTT, as it does in mammalian cells and model plants. Moreover, we found that roGFP1 is sensitive enough to cellular redox changes caused by genetic perturbation of single ROS genes, as exemplified by knocked-down expression of individual ZmAPXs, in maize protoplasts under controlled culture conditions and under stress conditions imposed by H2O2 addition. These data provide evidence that roGFP1 functions in maize cells as a biosensor for cellular redox changes triggered by genetic lesion of single ROS genes even under stress conditions, and suggest a potential application of roGFP1 in large-scale screening for maize mutants of ROS signaling involved in development and stress resistance.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Protoplastos/metabolismo , Espécies Reativas de Oxigênio/análise , Zea mays/metabolismo , Ascorbato Peroxidases/antagonistas & inibidores , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Técnicas Biossensoriais , Ditiotreitol/farmacologia , Glutationa/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxirredução , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Protoplastos/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/genética
7.
Mol Plant Microbe Interact ; 24(1): 100-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20923364

RESUMO

Plant cell surface-localized receptor kinases such as FLS2, EFR, and CERK1 play a crucial role in detecting invading pathogenic bacteria. Upon stimulation by bacterium-derived ligands, FLS2 and EFR interact with BAK1, a receptor-like kinase, to activate immune responses. A number of Pseudomonas syringae effector proteins are known to block immune responses mediated by these receptors. Previous reports suggested that both FLS2 and BAK1 could be targeted by the P. syringae effector AvrPto to inhibit plant defenses. Here, we provide new evidence further supporting that FLS2 but not BAK1 is targeted by AvrPto in plants. The AvrPto-FLS2 interaction prevented the phosphorylation of BIK1, a downstream component of the FLS2 pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Protoplastos/metabolismo , Protoplastos/microbiologia , Pseudomonas syringae/enzimologia , Pseudomonas syringae/imunologia , Plântula/genética , Plântula/metabolismo , Plântula/microbiologia
8.
Curr Biol ; 18(1): 74-80, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18158241

RESUMO

Plants use receptor kinases, such as FLS2 and EFR, to perceive bacterial pathogens and initiate innate immunity. This immunity is often suppressed by bacterial effectors, allowing pathogen propagation. To counteract, plants have evolved disease resistance genes that detect the bacterial effectors and reinstate resistance. The Pseudomonas syringae effector AvrPto promotes infection in susceptible plants but triggers resistance in plants carrying the protein kinase Pto and the associated resistance protein Prf. Here we show that AvrPto binds receptor kinases, including Arabidopsis FLS2 and EFR and tomato LeFLS2, to block plant immune responses in the plant cell. The ability to target receptor kinases is required for the virulence function of AvrPto in plants. The FLS2-AvrPto interaction and Pto-AvrPto interaction appear to share similar sequence requirements, and Pto competes with FLS2 for AvrPto binding. The results suggest that the mechanism by which AvrPto recognizes virulence targets is linked to the evolution of Pto, which, in association with Prf, recognizes the bacterium and triggers strong resistance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/fisiologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/microbiologia , Arabidopsis/enzimologia , Proteínas de Bactérias/metabolismo , Imunidade Inata/genética , Solanum lycopersicum/enzimologia , Sistema de Sinalização das MAP Quinases , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/imunologia , Fatores de Virulência/metabolismo , Fatores de Virulência/fisiologia
9.
Plant Signal Behav ; 3(8): 583-5, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19704476

RESUMO

Bacterial effectors are double-edged swords that enhance bacterial virulence in susceptible plants while trigger resistance in plants carrying cognate resistance proteins. A well-known example of this is Pseudomonas syringae protein AvrPto that is delivered into plant cells through the type III secretion system. AvrPto inhibits immune responses in Arabidopsis plants but triggers resistance in some tomato plants carrying cognate resistance proteins Pto, a serine/threonine kinase, and Prf, a nucleotide-binding leucine-rich repeat protein. In a recent structural study we showed that AvrPto is an inhibitor of the Pto protein kinase. Because Pto closely resemble the kinase domain of receptor kinases, which include pattern recognition receptors (PRRs) crucial for plants to detect invading pathogens, we tested the possibility that PRRs such as FLS2 and EFR are targeted by AvrPto in susceptible plants. Indeed, AvrPto is capable of binding the FLS2 and EFR kinases to block plant immune responses when expressed in protoplasts. In Arabidopsis plants containing FLS2, the P. syringae strain lacking avrPto is compromised in its ability to multiply. However, the defect of the avrPto-deletion strain was alleviated in fls2 plants, indicating a role of AvrPto in overcoming FLS2-mediated resistance. Interestingly, the FLS2-AvrPto and Pto-AvrPto interactions share significant similarity, raising the tantalizing possibility that Pto has evolved as a molecular decoy of the intended targets of AvrPto.

10.
Planta ; 226(1): 215-24, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17216231

RESUMO

Plants respond differently to damage by different herbivorous insects. We speculated that sibling herbivorous species with different host ranges might also influence plant responses differently. Such differences may be associated with the diet breadth (specialization) of herbivores within a feeding guild, and the specialist may cause less intensive plant responses than the generalist. The tobacco Nicotinana tabacum L. is the common host plant of a generalist Helicoverpa armigera (Hübner) and a specialist H. assulta Guenée (Lepidoptera, Noctuidae). The induced responses of tobacco to feeding of these two noctuid herbivores and mechanical wounding were compared. The results showed that the feeding of the specialist H. assulta and the generalist H. armigera resulted in the same inducible defensive system, but response intensity of plants was different to these two species. Inductions of jasmonic acid (JA), lipoxygenase (LOX), and proteinase inhibitors (PIs) were not significantly different concerning these two species, but H. assulta caused the less intensive foliar polyphenol oxidase (PPO) increase, more intensive nicotine and peroxidase (POD) increases in tobacco than H. armigera. The defensive response of plant to herbivores with different diet breadth seems to be more complicated than we expected, and the specialist does not necessarily cause less intensive plant responses than the generalist.


Assuntos
Mariposas/metabolismo , Nicotiana/metabolismo , Animais , Catecol Oxidase/metabolismo , Ciclopentanos/metabolismo , Ecossistema , Larva/metabolismo , Lipoxigenase/metabolismo , Nicotina/metabolismo , Oxilipinas , Peroxidase/metabolismo , Folhas de Planta , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Inibidores de Proteases/metabolismo , Especificidade da Espécie , Nicotiana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...