Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 10(4): 463-474, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183735

RESUMO

Cytoplasmic FMRP interacting protein 1 (CYFIP1) is a candidate gene for intellectual disability (ID), autism, schizophrenia and epilepsy. It is a member of a family of proteins that is highly conserved during evolution, sharing high homology with its Drosophila homolog, dCYFIP. CYFIP1 interacts with the Fragile X mental retardation protein (FMRP, encoded by the FMR1 gene), whose absence causes Fragile X syndrome, and with the translation initiation factor eIF4E. It is a member of the WAVE regulatory complex (WRC), thus representing a link between translational regulation and the actin cytoskeleton. Here, we present data showing a correlation between mRNA levels of CYFIP1 and other members of the WRC. This suggests a tight regulation of the levels of the WRC members, not only by post-translational mechanisms, as previously hypothesized. Moreover, we studied the impact of loss of function of both CYFIP1 and FMRP on neuronal growth and differentiation in two animal models - fly and mouse. We show that these two proteins antagonize each other's function not only during neuromuscular junction growth in the fly but also during new neuronal differentiation in the olfactory bulb of adult mice. Mechanistically, FMRP and CYFIP1 modulate mTor signaling in an antagonistic manner, likely via independent pathways, supporting the results obtained in mouse as well as in fly at the morphological level. Collectively, our results illustrate a new model to explain the cellular roles of FMRP and CYFIP1 and the molecular significance of their interaction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Células Cultivadas , Epistasia Genética , Técnicas de Inativação de Genes , Inativação Gênica , Humanos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética
2.
Neurosci Biobehav Rev ; 46 Pt 2: 242-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24462888

RESUMO

Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability due to the silencing of the FMR1 gene encoding FMRP (Fragile X Mental Retardation Protein), an RNA-binding protein involved in different steps of RNA metabolism. Of particular interest is the key role of FMRP in translational regulation. Since the first functional characterizations of FMRP, its role has been underlined by its association with actively translating polyribosomes. Furthermore, a plethora of mRNA targets of FMRP have been identified. In the absence of FMRP the deregulation of translation/transport/stability of these mRNAs has a cascade effect on many pathways, resulting into the final phenotype. We review here a set of targets of FMRP (mRNAs and proteins) that may have an impact on the FXS phenotype by deregulating some key cellular processes, such as translation, cytoskeleton remodeling and oxidative stress. The manipulation of these abnormal pathways by specific drugs may represent new therapeutic opportunities for FXS patients.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Citoesqueleto/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Regulação da Expressão Gênica/genética , Humanos , MicroRNAs/metabolismo , Modelos Genéticos , Terapia de Alvo Molecular , Estresse Oxidativo/genética
3.
PLoS One ; 8(9): e74481, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040258

RESUMO

MOTIVATION: RNA molecules specifically enriched in the neuropil of neuronal cells and in particular in dendritic spines are of great interest for neurobiology in virtue of their involvement in synaptic structure and plasticity. The systematic recognition of such molecules is therefore a very important task. High resolution images of RNA in situ hybridization experiments contained in the Allen Brain Atlas (ABA) represent a very rich resource to identify them and have been so far exploited for this task through human-expert analysis. However, software tools that may automatically address the same objective are not very well developed. RESULTS: In this study we describe an automatic method for exploring in situ hybridization data and discover neuropil-enriched RNAs in the mouse hippocampus. We called it Hippo-ATESC (Automatic Texture Extraction from the Hippocampal region using Soft Computing). Bioinformatic validation showed that the Hippo-ATESC is very efficient in the recognition of RNAs which are manually identified by expert curators as neuropil-enriched on the same image series. Moreover, we show that our method can also highlight genes revealed by microdissection-based methods but missed by human visual inspection. We experimentally validated our approach by identifying a non-coding transcript enriched in mouse synaptosomes. The code is freely available on the web at http://ibislab.ce.unipr.it/software/hippo/.


Assuntos
Hipocampo/metabolismo , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Neurópilo/metabolismo , RNA Mensageiro/análise , Software , Algoritmos , Animais , Atlas como Assunto , Perfilação da Expressão Gênica , Hipocampo/ultraestrutura , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Hibridização In Situ , Internet , Camundongos , Neurópilo/ultraestrutura , RNA Mensageiro/genética
4.
Biochim Biophys Acta ; 1833(8): 1885-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23570868

RESUMO

Telomere length maintenance is critical for organisms' long-term survival and cancer cell proliferation. Telomeres are kept within species-specific length ranges by the interplay between telomerase activity and telomeric chromatin organization. In this paper, we exploited telomerase immortalized human fibroblasts (cen3tel) that gradually underwent neoplastic transformation during culture propagation to study telomere composition and length regulation during the transformation process. Just after telomerase catalytic subunit (hTERT) expression, cen3tel telomeres shortened despite the presence of telomerase activity. At a later stage and concomitantly with transformation, cells started elongating telomeres, which reached a mean length greater than 100kb in about 900 population doublings. Super-telomeres were stable and compatible with cell growth and tumorigenesis. Telomere extension was associated with increasing levels of telomerase activity that were linked to the deregulation of endogenous telomerase RNA (hTERC) and exogenous telomerase reverse transcriptase (hTERT) expression. Notably, the increase in hTERC levels paralleled the increase in telomerase activity, suggesting that this subunit plays a role in regulating enzyme activity. Telomeres ranging in length between 10 and more than 100kb were maintained in an extendible state although TRF1 and TRF2 binding increased with telomere length. Super-telomeres neither influenced subtelomeric region global methylation nor the expression of the subtelomeric gene FRG1, attesting the lack of a clear-cut relationship between telomere length, subtelomeric DNA methylation and expression in human cells. The cellular levels of the telomeric proteins hTERT, TRF1, TRF2 and Hsp90 rose with transformation and were independent of telomere length, pointing to a role of these proteins in tumorigenesis.


Assuntos
Transformação Celular Neoplásica/genética , Fibroblastos/fisiologia , Homeostase do Telômero/genética , Telômero/genética , Telômero/metabolismo , Linhagem Celular Transformada , Transformação Celular Neoplásica/metabolismo , Metilação de DNA , Fibroblastos/metabolismo , Humanos , Proteínas dos Microfilamentos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA/genética , Proteínas de Ligação a RNA , Telomerase/genética , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
5.
Hum Mol Genet ; 22(10): 1971-82, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23390134

RESUMO

While FMR1 is silenced in Fragile X syndrome (FXS) patients carrying the full mutation, its expression is elevated (2-8 fold) in premutated individuals. These people may develop the Fragile X-associated Tremor/Ataxia syndrome (FXTAS), a late onset neurodegenerative disorder characterized by ataxia and parkinsonism. In addition, people carrying the premutation can be affected by a set of neurological and behavioral disorders during young age. Problems of memory have been detected in these patients as well as in the mouse models for FXTAS. To date little is known concerning the metabolism of FMR1 mRNA, notwithstanding the importance of the finely tuned regulation of the expression of this gene. In the present study, we identified three microRNAs that specifically target the 3' UTR of FMR1 and can modulate its expression throughout the brain particularly at the synapse where their expression is very high. The expression level of miR-221 is reduced in synaptosomal preparations of young FXTAS mice suggesting a general deregulation of transcripts located at the synapse of these mice. By transcriptome analysis, we show here a robust deregulation of the expression levels of genes involved in learning, memory and autistic behavior, Parkinson disease and neurodegeneration. These findings suggest the presence of a synaptopathy in these animals. Interestingly, many of those deregulated mRNAs are target of the same microRNAs that modulate the expression of FMR1 at the synapse.


Assuntos
Regiões 3' não Traduzidas , Ataxia/metabolismo , Proteína do X Frágil da Deficiência Intelectual/biossíntese , Síndrome do Cromossomo X Frágil/metabolismo , MicroRNAs/metabolismo , Sinapses/metabolismo , Tremor/metabolismo , Animais , Ataxia/genética , Ataxia/patologia , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Células HeLa , Humanos , Camundongos , MicroRNAs/genética , Células NIH 3T3 , Sinapses/genética , Sinapses/patologia , Tremor/genética , Tremor/patologia
6.
Prog Brain Res ; 197: 29-51, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22541287

RESUMO

Intellectual disability (ID) is the most frequent cause of serious handicap in children and young adults and interests 2-3% of worldwide population, representing a serious problem from the medical, social, and economic points of view. The causes are very heterogeneous. Genes involved in ID have various functions altering different pathways important in neuronal function. Regulation of mRNA metabolism is particularly important in neurons for synaptic structure and function. Here, we review ID due to alteration of mRNA metabolism. Functional absence of some RNA-binding proteins--namely, FMRP, FMR2P, PQBP1, UFP3B, VCX-A--causes different forms of ID. These proteins are involved in different steps of RNA metabolism and, even if a detailed analysis of their RNA targets has been performed so far only for FMRP, it appears clear that they modulate some aspects (translation, stability, transport, and sublocalization) of a subset of RNAs coding for proteins, whose function must be relevant for neurons. Two other proteins, DYRK1A and CDKL5, involved in Down syndrome and Rett syndrome, respectively, have been shown to have an impact on splicing efficiency of specific mRNAs. Both proteins are kinases and their effect is indirect. Interestingly, both are localized in nuclear speckles, the nuclear domains where splicing factors are assembled, stocked, and recycled and influence their biogenesis and/or their organization.


Assuntos
Deficiência Intelectual , Neurônios/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adulto , Criança , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Modelos Moleculares , RNA Mensageiro/genética
7.
Hum Mol Genet ; 20(10): 1873-85, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21330300

RESUMO

The AFF (AF4/FMR2) family of genes includes four members: AFF1/AF4, AFF2/FMR2, AFF3/LAF4 and AFF4/AF5q31. AFF2/FMR2 is silenced in FRAXE intellectual disability, while the other three members have been reported to form fusion genes as a consequence of chromosome translocations with the myeloid/lymphoid or mixed lineage leukemia (MLL) gene in acute lymphoblastic leukemias (ALLs). All AFF proteins are localized in the nucleus and their role as transcriptional activators with a positive action on RNA elongation was primarily studied. We have recently shown that AFF2/FMR2 localizes to nuclear speckles, subnuclear structures considered as storage/modification sites of pre-mRNA splicing factors, and modulates alternative splicing via the interaction with the G-quadruplex RNA-forming structure. We show here that similarly to AFF2/FMR2, AFF3/LAF4 and AFF4/AF5q31 localize to nuclear speckles and are able to bind RNA, having a high apparent affinity for the G-quadruplex structure. Interestingly, AFF3/LAF4 and AFF4/AF5q31, like AFF2/FMR2, modulate, in vivo, the splicing efficiency of a mini-gene containing a G-quadruplex structure in one alternatively spliced exon. Furthermore, we observed that the overexpression of AFF2/3/4 interferes with the organization and/or biogenesis of nuclear speckles. These findings fit well with our observation that enlarged nuclear speckles are present in FRAXE fibroblasts. Furthermore, our findings suggest functional redundancy among the AFF family members in the regulation of splicing and transcription. It is possible that other members of the AFF family compensate for the loss of AFF2/FMR2 activity and as such explain the relatively mild to borderline phenotype observed in FRAXE patients.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Fibroblastos/metabolismo , Expressão Gênica/genética , Ordem dos Genes , Genes Reporter/genética , Células HeLa , Humanos , Espaço Intranuclear/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Splicing de RNA/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
Oncol Rep ; 19(6): 1605-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18497972

RESUMO

Telomeres, the ends of eukaryotic chromosomes, have a variable length among individuals and cell types. While studies in telomerase-deficient mice and cells showed an inverse correlation between telomere length and radiosensitivity, it is less clear whether this remains true in telomerase-proficient cells. To gain insight into this topic, we studied radiosensitivity in three telomerase immortalized fibroblast clones derived from the same cell line and characterized by different telomere length. In two clones, cen3tel4 and cen3tel5, the mean terminal restriction fragment length was approximately 13 and 10 kb, respectively and in the third clone, cen3pci16, it was approximately 4 kb, which is lower than in senescent fibroblasts. To test radiosensitivity, we determined survival to gamma-rays and the induction of chromosomal aberrations after irradiation. Neither the LD50, the gamma-ray dose that reduces survival to 50%, nor the frequency of aberrations detected in the three cell lines showed an inverse correlation with telomere length. In particular, the cen3pci16 cells, which have very short telomeres, did not show a higher sensitivity to irradiation or a greater frequency of chromosomal abnormalities compared to the other two cell lines. Our results suggest that, in the presence of telomerase activity, short telomeres are stabilized and do not cause an increase in radiosensitivity.


Assuntos
Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Raios gama , Tolerância a Radiação , Telomerase/metabolismo , Telômero/fisiologia , Células Cultivadas , Aberrações Cromossômicas , Radioisótopos de Cobalto , Relação Dose-Resposta à Radiação , Fibroblastos/enzimologia , Humanos , Telomerase/genética , Telômero/efeitos da radiação
10.
Cancer Res ; 65(24): 11411-8, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16357149

RESUMO

We have described recently a human fibroblast cell line immortalized through ectopic telomerase expression (cen3tel), in which the extension of the life span was associated with the appearance of chromosomal aberrations and with the ability to grow in the absence of solid support. As reported in this article, on further propagation in culture, cen3tel cells became neoplastically transformed, being able to form tumors in nude mice. The analysis of the cells, during the gradual transition toward the tumorigenic phenotype, allowed us to trace cellular and molecular changes associated with different phases of transformation. At the stage in which they were able to grow in agar, cen3tel cells had lost contact growth inhibition but still retained the requirement of serum to proliferate and were not tumorigenic in immunocompromised mice. Moreover, they showed a down-regulation of the INK4A locus and were resistant to oncogenic Ras-induced senescence but still retained a functional p53. Subsequently, cen3tel cells became tumorigenic, lost p53 function because of a mutation in the DNA-binding motif, and overexpressed c-myc. Interestingly, tumorigenic cells did not carry activating mutations either in the ras proto-oncogenes (H-ras, N-ras, and K-ras) or in B-raf. Cen3tel cells gradually became hyperdiploid but did not display centrosome abnormalities. To our knowledge, cen3tel is the first telomerase immortalized fibroblast line, which became neoplastically transformed. In this system, we could associate a down-regulation of the INK4A locus with anchorage-independent growth and with resistance to Ras-induced senescence and link p53 mutations and c-myc overexpression with tumorigenicity.


Assuntos
Transformação Celular Neoplásica , Fibroblastos/metabolismo , Neoplasias Experimentais/patologia , Telomerase/metabolismo , Animais , Adesão Celular , Proliferação de Células , Células Cultivadas , Senescência Celular , Centrossomo , Aberrações Cromossômicas , Meios de Cultura Livres de Soro , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Análise Mutacional de DNA , Regulação para Baixo , Fibroblastos/citologia , Genes ras/genética , Humanos , Camundongos , Camundongos Nus , Mutação/genética , Neoplasias Experimentais/metabolismo , Ploidias , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Supressora de Tumor p53/genética
11.
Biochem Biophys Res Commun ; 308(4): 914-21, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12927806

RESUMO

Several reports have shown that the ectopic expression of the human telomerase catalytic subunit gene (hTERT) leads to an indefinite extension of the life span of human fibroblasts cultured in vitro without the appearance of cancer-associated changes. We infected two fibroblast strains derived from centenarian individuals with an hTERT containing retrovirus and isolated transduced massive populations (cen2tel and cen3tel). In both populations, hTERT expression reconstituted telomerase activity and extended the life span. In cen2tel, a net telomere lengthening was observed while, in cen3tel, telomeres stabilized at a length lower than that detected in senescent parental cells. Interestingly, both cen2tel and cen3tel cells developed chromosome anomalies, numerical first and structural thereafter. Moreover, cen3tel cells acquired the ability to grow in the absence of solid support, a typical feature of transformed cells. The results we present here highlight an unexpected possible outcome of cellular immortalization driven by telomerase reactivation, and indicate that, in some cases, an artificial extension of cellular replicative capacity can increase the probability of occurrence of genomic alterations, which can lead to cellular transformation.


Assuntos
Envelhecimento , Fibroblastos/metabolismo , Telomerase/genética , Telomerase/metabolismo , Ágar/metabolismo , Idoso , Idoso de 80 Anos ou mais , Adesão Celular , Divisão Celular , Transformação Celular Neoplásica , Senescência Celular , Centrômero/ultraestrutura , Aberrações Cromossômicas , DNA/metabolismo , Proteínas de Ligação a DNA , Feminino , Humanos , Cariotipagem , Retroviridae/genética , Telômero/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...